Sciact
  • EN
  • RU

On the Complexity of the Problem of Solving Systems of Tropical Polynomial Equations of Degree Two Научная публикация

Конференция XXIII International Conference Mathematical Optimization Theory and Operations Research
30 июн. - 6 июл. 2024 , Омск
Сборник Mathematical Optimization Theory and Operations Research: Recent Trends
Сборник, Springer. 2024. 388 c. ISBN 978-3-031-73364-2.
Журнал Communications in Computer and Information Science
ISSN: 1865-0929
Вых. Данные Год: 2024, Том: 2239, Страницы: 73–84 Страниц : 11 DOI: 10.1007/978-3-031-73365-9_5
Ключевые слова Tropical algebra · NP-completeness · Generic-case complexity · Asymptotic density
Авторы Buchinskiy Ivan M. 1 , Kotov Matvei V. 1 , Treier Alexander V. 1
Организации
1 Sobolev Institute of Mathematics of SB RAS, Omsk, Russia

Информация о финансировании (1)

1 Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». FWNF-2022-0003

Реферат: In this paper, we investigate the computational complexity of the problem of solving a one-sided system of equations of degree two of a special form over the max-plus algebra. Also, we consider the asymptotic density of solvable systems of this form. Such systems have appeared during the analysis of some tropical cryptography protocols that were recently suggested. We show how this problem is related to the integer linear programming problem and prove that this problem is NP-complete. We show that the asymptotic density of solvable systems of this form with some restrictions on the coefficients, the number of variables, and the number of equations is 0. As a corollary, we prove that this problem (with some restrictions on the coefficients, the number of variables, and the number of equations) is decidable generically in polynomial time.
Библиографическая ссылка: Buchinskiy I.M. , Kotov M.V. , Treier A.V.
On the Complexity of the Problem of Solving Systems of Tropical Polynomial Equations of Degree Two
В сборнике Mathematical Optimization Theory and Operations Research: Recent Trends. – Springer., 2024. – Т.2239. – C.73–84. – ISBN 978-3-031-73364-2. DOI: 10.1007/978-3-031-73365-9_5 Scopus OpenAlex
Даты:
Опубликована в печати: 20 дек. 2024 г.
Опубликована online: 20 дек. 2024 г.
Идентификаторы БД:
Scopus: 2-s2.0-85214256273
OpenAlex: W4405597819
Цитирование в БД:
БД Цитирований
OpenAlex 2
Scopus 1
Альметрики: