Sciact
  • EN
  • RU

On 2D quasi-isometric regular grids that are orthogonal far from corners Научная публикация

Журнал Applied Numerical Mathematics
ISSN: 0168-9274
Вых. Данные Год: 2003, Том: 46, Номер: 3-4, Страницы: 279-294 Страниц : 16 DOI: 10.1016/s0168-9274(03)00041-2
Ключевые слова Quasi-isometric grids; Conformal mapping; Nearly orthogonal grid; Variational approach; Non-Euclidean geometries; Geodesic quadrangles.
Авторы Chumakov Gennadii A. 1
Организации
1 Sobolev Institute of Mathematics SB RAS, Pr. Koptyuga 4, Novosibirsk 630090, Russia#TAB#

Реферат: A special class of the quasi-isometric mappings for the generation of quasi-isometric regular coordinate systems is discussed. The base computational strategy of our approach is that the physical field is decomposed into five nonoverlapping sub-regions which are automatically generated by solving a variational problem. Four of these blocks containing four corners on the boundary of the physical region are conformal images of geodesic quadrangles on surfaces of constant curvature. Within each of these blocks a quasi-isometric grid is generated. Orthogonality of coordinate lines holds in the fifth block which is a conformal image of a non-convex polygon composed of several rectangles on the plane.
Библиографическая ссылка: Chumakov G.A.
On 2D quasi-isometric regular grids that are orthogonal far from corners
Applied Numerical Mathematics. 2003. V.46. N3-4. P.279-294. DOI: 10.1016/s0168-9274(03)00041-2 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000184628200004
Scopus: 2-s2.0-0043172408
РИНЦ: 13441581
OpenAlex: W1980115922
Цитирование в БД:
БД Цитирований
Scopus 2
Web of science 2
OpenAlex 1
РИНЦ 2
Альметрики: