Sciact
  • EN
  • RU

On algebras of binary isolating formulas for weakly circularly minimal theories of convexity rank 2 Научная публикация

Журнал Kazakh Mathematical Journal
ISSN: 2413-6468
Вых. Данные Год: 2024, Том: 24, Номер: 4, Страницы: 6-21 Страниц : 16 DOI: 10.70474/kmj24-4-01
Ключевые слова algebra of binary formulas, ℵ0-categorical theory, weak circular minimality, circularly ordered structure, convexity rank.
Авторы Kulpeshov Beibut Sh. 1 , Sudoplatov Sergey V. 2,3
Организации
1 Kazakh British Technical University, Almaty, Kazakhstan
2 Sobolev Institute of Mathematics, Novosibirsk, Russia
3 Novosibirsk State Technical University, Novosibirsk, Russia

Реферат: This paper is devoted to the study of weakly circularly minimal circularly ordered structures. The simplest example of a circular order is a linear order with endpoints, in which the largest element is identified with the smallest. Another example is the order that arises when going around a circle. A circularly ordered structure is called weakly circularly minimal if any of its definable subsets is a finite union of convex sets and points. A theory is called weakly circularly minimal if all its models are weakly circularly minimal. Algebras of binary isolating formulas are described for ℵ0-categorical 1-transitive nonprimitive weakly circularly minimal theories of convexity rank 2 with a trivial definable closure having a monotonic-to-right function to the definable completion of a structure and non-having a non-trivial equivalence relation partitioning the universe of a structure into finitely many convex classes.
Библиографическая ссылка: Kulpeshov B.S. , Sudoplatov S.V.
On algebras of binary isolating formulas for weakly circularly minimal theories of convexity rank 2
Kazakh Mathematical Journal. 2024. V.24. N4. P.6-21. DOI: 10.70474/kmj24-4-01 РИНЦ OpenAlex
Даты:
Поступила в редакцию: 17 дек. 2024 г.
Принята к публикации: 23 дек. 2024 г.
Опубликована в печати: 30 дек. 2024 г.
Опубликована online: 30 дек. 2024 г.
Идентификаторы БД:
РИНЦ: 80981196
OpenAlex: W4405922717
Цитирование в БД: Пока нет цитирований
Альметрики: