On learning down-sets in quasi-orders, and ideals in Boolean algebras Научная публикация
Журнал |
Theory of Computing Systems
ISSN: 1432-4350 , E-ISSN: 1433-0490 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2025, Том: 69, Номер: 1, Номер статьи : 1, Страниц : 15 DOI: 10.1007/s00224-024-10201-y | ||||||
Ключевые слова | Algorithmic learning theory · Computable structure · Quasi-order · Boolean algebra · Ideal · Inductive inference | ||||||
Авторы |
|
||||||
Организации |
|
Информация о финансировании (1)
1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0011 |
Реферат:
The paper studies learnability from positive data for families of down-sets in quasiorders, and for families of ideals in Boolean algebras. We establish some connections between learnability and algebraic properties of the underlying structures. We prove that for a computably enumerable quasi-order (Q,≤Q), the family of all its downsets is BC-learnable (i.e., learnable w.r.t. semantical convergence) if and only if the reverse ordering (Q,≥Q) is a well-quasi-order. In addition, if the quasi-order(Q,≤Q) is computable, then BC-learnability for the family of all down-sets is equivalent to Ex-learnability (learnability w.r.t. syntactic convergence). We prove that for a computable upper semilattice U, the family of all its ideals is BC-learnable if and only if this family is Ex-learnable, if and only if each ideal of U is principal. In general, learnability depends on the choice of an isomorphic copy of U. We show that for every infinite, computable atomic Boolean algebra B, there exist computable algebras A and C isomorphic to B such that the family of all computably enumerable ideals in A is BC-learnable, while the family of all computably enumerable ideals in C is not BC-learnable.
Библиографическая ссылка:
Bazhenov N.
, Mustafa M.
On learning down-sets in quasi-orders, and ideals in Boolean algebras
Theory of Computing Systems. 2025. V.69. N1. 1 :1-15. DOI: 10.1007/s00224-024-10201-y WOS Scopus РИНЦ OpenAlex
On learning down-sets in quasi-orders, and ideals in Boolean algebras
Theory of Computing Systems. 2025. V.69. N1. 1 :1-15. DOI: 10.1007/s00224-024-10201-y WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 21 нояб. 2024 г. |
Принята к публикации: | 27 нояб. 2024 г. |
Опубликована online: | 27 дек. 2024 г. |
Опубликована в печати: | 15 мар. 2025 г. |
Идентификаторы БД:
Web of science: | WOS:001386529000001 |
Scopus: | 2-s2.0-85213547659 |
РИНЦ: | 80162916 |
OpenAlex: | W4405823637 |
Цитирование в БД:
Пока нет цитирований