Sciact
  • EN
  • RU

Properties of the deviation rate function and the asymptotics for the laplace transform of the distribution of a compound renewal process Full article

Journal Theory of Probability and its Applications
ISSN: 0040-585X , E-ISSN: 1095-7219
Output data Year: 2020, Volume: 64, Number: 4, Pages: 499-512 Pages count : 14 DOI: 10.1137/S0040585X97T989660
Tags Compound renewal process; Cramér’s condition; Deviation rate function; Laplace transform asymptotics; Large deviation principle; Large deviations; Legendre transform
Authors Borovkov A.A. 1 , Mogulskii A.A. 1 , Prokopenko E.I. 1
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation

Abstract: We find the asymptotics for the logarithm of the Laplace transform of the distribution of a compound renewal process as time increases unboundedly. It is assumed that the elements of the governing sequences of the renewal process satisfy Cramér’s moment condition. Representations for the deviation rate function of the compound renewal process are found. © by SIAM.
Cite: Borovkov A.A. , Mogulskii A.A. , Prokopenko E.I.
Properties of the deviation rate function and the asymptotics for the laplace transform of the distribution of a compound renewal process
Theory of Probability and its Applications. 2020. V.64. N4. P.499-512. DOI: 10.1137/S0040585X97T989660 WOS Scopus OpenAlex
Original: Боровков А.А. , Могульский А.А. , Прокопенко Е.И.
Свойства функции уклонений обобщенного процесса восстановления и асимптотика преобразования Лапласа над его распределением
Теория вероятностей и ее применения. 2019. Т.64. №4. С.625-641. DOI: 10.4213/tvp5285 OpenAlex
Identifiers:
Web of science: WOS:000551393100001
Scopus: 2-s2.0-85079616659
OpenAlex: W3006514948
Citing:
DB Citing
Scopus 3
OpenAlex 2
Web of science 6
Altmetrics: