Inverse Problems of Finding the Absorption Parameter in the Diffusion Equation Full article
Journal |
Mathematical Notes
ISSN: 0001-4346 , E-ISSN: 1573-8876 |
||
---|---|---|---|
Output data | Year: 2019, Volume: 106, Number: 3-4, Pages: 378-389 Pages count : 12 DOI: 10.1134/S0001434619090074 | ||
Tags | diffusion equation; existence; final integral overdetermination conditions; inverse problems; nonpercolation condition; unknown parameter | ||
Authors |
|
||
Affiliations |
|
Abstract:
The paper is devoted to the study of inverse problems of finding, together with a solution u(x, t) of the diffusion equationutu+[c(x,t)+aq0(x,t)]u=f(x,t), the parameter a characterizing absorption (c(x,t) and q0(x,t) are given functions). It is assumed that, on the function u(x,t), nonpercolation conditions and some special overdetermination conditions of integral form are imposed. We prove existence theorems for solutions (u(x,t),a) such that the function u(x, t) has all Sobolev generalized derivatives appearing in the equation and a is a nonnegative number. © 2019, Pleiades Publishing, Ltd.
Cite:
Kozhanov A.I.
Inverse Problems of Finding the Absorption Parameter in the Diffusion Equation
Mathematical Notes. 2019. V.106. N3-4. P.378-389. DOI: 10.1134/S0001434619090074 WOS Scopus OpenAlex
Inverse Problems of Finding the Absorption Parameter in the Diffusion Equation
Mathematical Notes. 2019. V.106. N3-4. P.378-389. DOI: 10.1134/S0001434619090074 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000492034300007 |
Scopus: | 2-s2.0-85074070472 |
OpenAlex: | W2982103200 |