Sciact
  • EN
  • RU

Inverse Problems of Finding the Absorption Parameter in the Diffusion Equation Full article

Journal Mathematical Notes
ISSN: 0001-4346 , E-ISSN: 1573-8876
Output data Year: 2019, Volume: 106, Number: 3-4, Pages: 378-389 Pages count : 12 DOI: 10.1134/S0001434619090074
Tags diffusion equation; existence; final integral overdetermination conditions; inverse problems; nonpercolation condition; unknown parameter
Authors Kozhanov A.I. 1
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation

Abstract: The paper is devoted to the study of inverse problems of finding, together with a solution u(x, t) of the diffusion equationutu+[c(x,t)+aq0(x,t)]u=f(x,t), the parameter a characterizing absorption (c(x,t) and q0(x,t) are given functions). It is assumed that, on the function u(x,t), nonpercolation conditions and some special overdetermination conditions of integral form are imposed. We prove existence theorems for solutions (u(x,t),a) such that the function u(x, t) has all Sobolev generalized derivatives appearing in the equation and a is a nonnegative number. © 2019, Pleiades Publishing, Ltd.
Cite: Kozhanov A.I.
Inverse Problems of Finding the Absorption Parameter in the Diffusion Equation
Mathematical Notes. 2019. V.106. N3-4. P.378-389. DOI: 10.1134/S0001434619090074 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000492034300007
Scopus: 2-s2.0-85074070472
OpenAlex: W2982103200
Citing:
DB Citing
Scopus 8
OpenAlex 8
Web of science 5
Altmetrics: