Sciact
  • EN
  • RU

Inverse Problems of Finding the Absorption Parameter in the Diffusion Equation Научная публикация

Журнал Mathematical Notes
ISSN: 0001-4346 , E-ISSN: 1573-8876
Вых. Данные Год: 2019, Том: 106, Номер: 3-4, Страницы: 378-389 Страниц : 12 DOI: 10.1134/S0001434619090074
Ключевые слова diffusion equation; existence; final integral overdetermination conditions; inverse problems; nonpercolation condition; unknown parameter
Авторы Kozhanov A.I. 1
Организации
1 Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation

Реферат: The paper is devoted to the study of inverse problems of finding, together with a solution u(x, t) of the diffusion equationutu+[c(x,t)+aq0(x,t)]u=f(x,t), the parameter a characterizing absorption (c(x,t) and q0(x,t) are given functions). It is assumed that, on the function u(x,t), nonpercolation conditions and some special overdetermination conditions of integral form are imposed. We prove existence theorems for solutions (u(x,t),a) such that the function u(x, t) has all Sobolev generalized derivatives appearing in the equation and a is a nonnegative number. © 2019, Pleiades Publishing, Ltd.
Библиографическая ссылка: Kozhanov A.I.
Inverse Problems of Finding the Absorption Parameter in the Diffusion Equation
Mathematical Notes. 2019. V.106. N3-4. P.378-389. DOI: 10.1134/S0001434619090074 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000492034300007
Scopus: 2-s2.0-85074070472
OpenAlex: W2982103200
Цитирование в БД:
БД Цитирований
Scopus 8
OpenAlex 8
Web of science 5
Альметрики: