Singular braids, singular links and subgroups of camomile type Full article
Journal |
Topology and its Applications
ISSN: 0166-8641 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2025, Volume: 362, Pages: 109206 Pages count : 19 DOI: 10.1016/j.topol.2025.109206 | ||||||
Tags | Braid group, Center, Link invariant, Monoid of singular braids, Quandle, Singquandle, Singular link, Singular pure braid group | ||||||
Authors |
|
||||||
Affiliations |
|
Funding (1)
1 | Министерство науки и высшего образования РФ | 075-02-2024-1437 |
Abstract:
In this paper we find a finite set of generators and defining relations for the singular pure braid group SPn, n≥3, that is a subgroup of the singular braid group SBn. Using this presentation, we prove that the center of SBn (which is equal to the center of SPn for n≥3) is a direct factor in SPn but it is not a direct factor in SBn. We introduce subgroups of camomile type and prove that the singular pure braid group SPn, n≥5, is a subgroup of camomile type in SBn. Also we construct the fundamental singquandle using a representation of the singular braid monoid by endomorphisms of free quandle. For any singular link we define some family of groups which are invariants of this link.
Cite:
Bardakov V.G.
, Kozlovskaya T.A.
Singular braids, singular links and subgroups of camomile type
Topology and its Applications. 2025. V.362. P.109206. DOI: 10.1016/j.topol.2025.109206 WOS Scopus РИНЦ OpenAlex
Singular braids, singular links and subgroups of camomile type
Topology and its Applications. 2025. V.362. P.109206. DOI: 10.1016/j.topol.2025.109206 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Jan 15, 2023 |
Accepted: | Jan 4, 2025 |
Published online: | Jan 9, 2025 |
Published print: | Mar 1, 2025 |
Identifiers:
Web of science: | WOS:001402981700001 |
Scopus: | 2-s2.0-85215065660 |
Elibrary: | 81444937 |
OpenAlex: | W4406214011 |
Citing:
Пока нет цитирований