Sciact
  • EN
  • RU

Singular braids, singular links and subgroups of camomile type Full article

Journal Topology and its Applications
ISSN: 0166-8641
Output data Year: 2025, Volume: 362, Pages: 109206 Pages count : 19 DOI: 10.1016/j.topol.2025.109206
Tags Braid group, Center, Link invariant, Monoid of singular braids, Quandle, Singquandle, Singular link, Singular pure braid group
Authors Bardakov Valeriy G. 1,2,3 , Kozlovskaya Tatyana A. 1,2,3
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State Agrarian University
3 Regional Scientific and Educational Mathematical Center of Tomsk State University

Funding (1)

1 Министерство науки и высшего образования РФ 075-02-2024-1437

Abstract: In this paper we find a finite set of generators and defining relations for the singular pure braid group SPn, n≥3, that is a subgroup of the singular braid group SBn. Using this presentation, we prove that the center of SBn (which is equal to the center of SPn for n≥3) is a direct factor in SPn but it is not a direct factor in SBn. We introduce subgroups of camomile type and prove that the singular pure braid group SPn, n≥5, is a subgroup of camomile type in SBn. Also we construct the fundamental singquandle using a representation of the singular braid monoid by endomorphisms of free quandle. For any singular link we define some family of groups which are invariants of this link.
Cite: Bardakov V.G. , Kozlovskaya T.A.
Singular braids, singular links and subgroups of camomile type
Topology and its Applications. 2025. V.362. P.109206. DOI: 10.1016/j.topol.2025.109206 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Jan 15, 2023
Accepted: Jan 4, 2025
Published online: Jan 9, 2025
Published print: Mar 1, 2025
Identifiers:
Web of science: WOS:001402981700001
Scopus: 2-s2.0-85215065660
Elibrary: 81444937
OpenAlex: W4406214011
Citing: Пока нет цитирований
Altmetrics: