Singular braids, singular links and subgroups of camomile type Научная публикация
| Журнал |
Topology and its Applications
ISSN: 0166-8641 |
||||||
|---|---|---|---|---|---|---|---|
| Вых. Данные | Год: 2025, Том: 362, Страницы: 109206 Страниц : 19 DOI: 10.1016/j.topol.2025.109206 | ||||||
| Ключевые слова | Braid group, Center, Link invariant, Monoid of singular braids, Quandle, Singquandle, Singular link, Singular pure braid group | ||||||
| Авторы |
|
||||||
| Организации |
|
Информация о финансировании (1)
| 1 | Министерство науки и высшего образования РФ | 075-02-2024-1437 |
Реферат:
In this paper we find a finite set of generators and defining relations for the singular pure braid group SPn, n≥3, that is a subgroup of the singular braid group SBn. Using this presentation, we prove that the center of SBn (which is equal to the center of SPn for n≥3) is a direct factor in SPn but it is not a direct factor in SBn. We introduce subgroups of camomile type and prove that the singular pure braid group SPn, n≥5, is a subgroup of camomile type in SBn. Also we construct the fundamental singquandle using a representation of the singular braid monoid by endomorphisms of free quandle. For any singular link we define some family of groups which are invariants of this link.
Библиографическая ссылка:
Bardakov V.G.
, Kozlovskaya T.A.
Singular braids, singular links and subgroups of camomile type
Topology and its Applications. 2025. V.362. P.109206. DOI: 10.1016/j.topol.2025.109206 WOS Scopus РИНЦ OpenAlex
Singular braids, singular links and subgroups of camomile type
Topology and its Applications. 2025. V.362. P.109206. DOI: 10.1016/j.topol.2025.109206 WOS Scopus РИНЦ OpenAlex
Даты:
| Поступила в редакцию: | 15 янв. 2023 г. |
| Принята к публикации: | 4 янв. 2025 г. |
| Опубликована online: | 9 янв. 2025 г. |
| Опубликована в печати: | 1 мар. 2025 г. |
Идентификаторы БД:
| Web of science: | WOS:001402981700001 |
| Scopus: | 2-s2.0-85215065660 |
| РИНЦ: | 81444937 |
| OpenAlex: | W4406214011 |