Sciact
  • EN
  • RU

Rational cubic spline zipper fractal functions and their shape aspects Full article

Journal Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795
Output data Year: 2025, Volume: 2025, DOI: 10.1007/s10958-025-07569-8
Tags Rational cubic spline · Fractal interpolation function · Zipper · Positivity · Monotonicity
Authors Vijay S. 1 , Chand A.K.B. 1 , Tetenov A.V. 2
Affiliations
1 Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
2 Sobolev Institute of Mathematics, Novosibirsk 630090, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0005

Abstract: This paper analyzes the convergence and shape-preserving properties of two interpolants: zipper rational cubic splines (RCSs) and rational cubic spline zipper fractal interpolation functions (RCS ZFIFs). A zipper RCS uses cubic/quadratic rational functions with shape parameters and a binary signature vector, while an RCS ZFIF is derived from a zipper RCS through fractal perturbation with appropriate base and scaling functions. We derive sufficient conditions for shape-preserving properties such as positivity, monotonicity, and boundary containment. Theoretical results are validated using examples of shaped interpolation data.
Cite: Vijay S. , Chand A.K.B. , Tetenov A.V.
Rational cubic spline zipper fractal functions and their shape aspects
Journal of Mathematical Sciences (United States). 2025. V.2025. DOI: 10.1007/s10958-025-07569-8 Scopus РИНЦ OpenAlex
Dates:
Accepted: Jan 9, 2025
Published online: Feb 10, 2025
Identifiers:
Scopus: 2-s2.0-85217523689
Elibrary: 81385645
OpenAlex: W4407290938
Citing: Пока нет цитирований
Altmetrics: