Rational cubic spline zipper fractal functions and their shape aspects Научная публикация
| Журнал |
Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795 |
||||
|---|---|---|---|---|---|
| Вых. Данные | Год: 2025, Том: 2025, DOI: 10.1007/s10958-025-07569-8 | ||||
| Ключевые слова | Rational cubic spline · Fractal interpolation function · Zipper · Positivity · Monotonicity | ||||
| Авторы |
|
||||
| Организации |
|
Информация о финансировании (1)
| 1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0005 |
Реферат:
This paper analyzes the convergence and shape-preserving properties of two interpolants: zipper rational cubic splines (RCSs) and rational cubic spline zipper fractal interpolation functions (RCS ZFIFs). A zipper RCS uses cubic/quadratic rational functions with shape parameters and a binary signature vector, while an RCS ZFIF is derived from a zipper RCS through fractal perturbation with appropriate base and scaling functions. We derive sufficient conditions for shape-preserving properties such as positivity, monotonicity, and boundary containment. Theoretical results are validated using examples of shaped interpolation data.
Библиографическая ссылка:
Vijay S.
, Chand A.K.B.
, Tetenov A.V.
Rational cubic spline zipper fractal functions and their shape aspects
Journal of Mathematical Sciences (United States). 2025. V.2025. DOI: 10.1007/s10958-025-07569-8 Scopus РИНЦ OpenAlex
Rational cubic spline zipper fractal functions and their shape aspects
Journal of Mathematical Sciences (United States). 2025. V.2025. DOI: 10.1007/s10958-025-07569-8 Scopus РИНЦ OpenAlex
Даты:
| Принята к публикации: | 9 янв. 2025 г. |
| Опубликована online: | 10 февр. 2025 г. |
Идентификаторы БД:
| Scopus: | 2-s2.0-85217523689 |
| РИНЦ: | 81385645 |
| OpenAlex: | W4407290938 |
Цитирование в БД:
Пока нет цитирований