Sciact
  • EN
  • RU

The Spectrum of a problem on the flow of a polymeric viscoelastic fluid in a cylindrical channel described by vinogradov-pokrovski model Научная публикация

Сборник Analytical Methods in Differential Equations
Сборник, De Gruyter. 2025. 206 c. ISBN 9783111570518. РИНЦ
Вых. Данные Год: 2025, Страницы: 173-184 Страниц : 11 DOI: 10.1515/9783111570518-018
Ключевые слова incompressible viscoelastic polymeric medium, rheological correlation, resting state, linearized mixed problem, Lyapunov stability
Авторы Tkachev D.L. 1 , Biberdorf E.A. 1
Организации
1 Sobolev Institute of Mathematics

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0008

Реферат: We study the linear stability of a resting state for flows of incompressible viscoelastic polymeric fluid in an infinite cylindrical channel in axisymmetric perturbation class. We use structurally-phenomenological Vinogradov-Pokrovski model as our mathematical model. We formulate two equations that define the spectrum of the problem. Our numerical experiments show that with the growth of perturbations frequency along the channel axis there appear eigenvalues with positive real part for the radial velocity component of the first spectral equation. That guarantees linear Lyapunov instability of the resting state.
Библиографическая ссылка: Tkachev D.L. , Biberdorf E.A.
The Spectrum of a problem on the flow of a polymeric viscoelastic fluid in a cylindrical channel described by vinogradov-pokrovski model
В сборнике Analytical Methods in Differential Equations. – De Gruyter., 2025. – C.173-184. – ISBN 9783111570518. DOI: 10.1515/9783111570518-018 OpenAlex
Даты:
Опубликована в печати: 17 февр. 2025 г.
Опубликована online: 17 февр. 2025 г.
Идентификаторы БД:
OpenAlex: W4407147145
Цитирование в БД: Пока нет цитирований
Альметрики: