Sciact
  • EN
  • RU

Boundary-value problems for one class of composite equations with the wave operator in the principal part Научная публикация

Журнал Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795
Вых. Данные Год: 2025, Том: 287, Номер: 6, Страницы: 890-897 Страниц : 8 DOI: 10.1007/s10958-025-07648-w
Ключевые слова composite equation, wave operator, initial-boundary-value problem, nonlocal boundary-value problem, regular solution, existence, uniqueness.
Авторы Kozhanov A.I. 1 , Plekhanova T.P. 2
Организации
1 S. L. Sobolev Mathematical Institute of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
2 Buryat State University, Ulan-Ude, Russia

Информация о финансировании (1)

1 Российский фонд фундаментальных исследований 18-51-41009

Реферат: The work is devoted to the solvability of local and nonlocal boundary-value problems for composite (Sobolev-type) equations + Bu = f(x, t), where , Δ is the Laplace operator acting on spatial variables, B is a second-order differential operator that also acts on spatial variables, and p is a nonnegative integer. For these equations, the existence and uniqueness of regular solutions (possessing all generalized derivatives in the Sobolev sense that are involved in the equation) are proved to initial-boundary-value problems and the boundary-value problems nonlocal in the time variable. Some generalizations and refinements of the results obtained are also described.
Библиографическая ссылка: Kozhanov A.I. , Plekhanova T.P.
Boundary-value problems for one class of composite equations with the wave operator in the principal part
Journal of Mathematical Sciences (United States). 2025. V.287. N6. P.890-897. DOI: 10.1007/s10958-025-07648-w Scopus РИНЦ OpenAlex
Даты:
Опубликована в печати: 26 февр. 2025 г.
Опубликована online: 26 февр. 2025 г.
Идентификаторы БД:
Scopus: 2-s2.0-85218727179
РИНЦ: 81760815
OpenAlex: W4407984166
Цитирование в БД: Пока нет цитирований
Альметрики: