Sciact
  • EN
  • RU

Estimates of Solutions in the Model of Interaction of Populations with Several Delays Научная публикация

Журнал Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795
Вых. Данные Год: 2025, Том: 287, Номер: 6, Страницы: 898-919 Страниц : 22 DOI: 10.1007/s10958-025-07649-9
Ключевые слова model of interaction of populations, equation with delayed argument, asymptotic stability, estimate of solution, attraction set, modified Lyapunov–Krasovsky functional.
Авторы Skvortsova M.A. 1,2
Организации
1 S. L. Sobolev Mathematical Institute of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia;
2 Novosibirsk State University, Novosibirsk, Russia

Информация о финансировании (2)

1 Российский фонд фундаментальных исследований 18-29-10086
2 Российский фонд фундаментальных исследований 18-31-00408

Реферат: We consider a system of differential equations with several delays, which describes the interaction of n species of microorganisms. We obtain sufficient conditions for the asymptotic stability of a nontrivial equilibrium state corresponding to the partial survival of populations. We establish estimates of solutions that characterize the rate of stabilization at infinity and indicate estimates of the attraction set of a given equilibrium state. The results are obtained by using the modified Lyapunov–Krasovsky functional.
Библиографическая ссылка: Skvortsova M.A.
Estimates of Solutions in the Model of Interaction of Populations with Several Delays
Journal of Mathematical Sciences (United States). 2025. V.287. N6. P.898-919. DOI: 10.1007/s10958-025-07649-9 Scopus РИНЦ OpenAlex
Даты:
Опубликована в печати: 26 февр. 2025 г.
Опубликована online: 26 февр. 2025 г.
Идентификаторы БД:
Scopus: 2-s2.0-85218715811
РИНЦ: 81868676
OpenAlex: W4407984195
Цитирование в БД: Пока нет цитирований
Альметрики: