Solution of Leray's problem for stationary Navier-Stokes equations in plane and axially symmetric spatial domains Научная публикация
Журнал |
Annals of Mathematics
ISSN: 0003-486X |
||||||||
---|---|---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2014, Страницы: 769-807 Страниц : 39 DOI: 10.4007/annals.2015.181.2.7 | ||||||||
Авторы |
|
||||||||
Организации |
|
Реферат:
We study the nonhomogeneous boundary value problem for the Navier-Stokes equations of steady motion of a viscous incompressible fluid in arbitrary bounded multiply connected plane or axially-symmetric spatial domains. (For axially symmetric domains, data is assumed to be axially symmetric as well.) We prove that this problem has a solution under the sole necessary condition of zero total flux through the boundary. The problem was formulated by Jean Leray 80 years ago. The proof of the main result uses Bernoulli's law for a weak solution to the Euler equations.
Библиографическая ссылка:
Korobkov M.
, Pileckas K.
, Russo R.
Solution of Leray's problem for stationary Navier-Stokes equations in plane and axially symmetric spatial domains
Annals of Mathematics. 2014. P.769-807. DOI: 10.4007/annals.2015.181.2.7 WOS Scopus OpenAlex
Solution of Leray's problem for stationary Navier-Stokes equations in plane and axially symmetric spatial domains
Annals of Mathematics. 2014. P.769-807. DOI: 10.4007/annals.2015.181.2.7 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000352017600007 |
Scopus: | 2-s2.0-84912038838 |
OpenAlex: | W2962734697 |