Sciact
  • EN
  • RU

Solution of Leray's problem for stationary Navier-Stokes equations in plane and axially symmetric spatial domains Научная публикация

Журнал Annals of Mathematics
ISSN: 0003-486X
Вых. Данные Год: 2014, Страницы: 769-807 Страниц : 39 DOI: 10.4007/annals.2015.181.2.7
Авторы Korobkov Mikhail 1,2 , Pileckas Konstantin 3 , Russo Remigio 4
Организации
1 Sobolev Institute of Mathematics
2 Novosibirsk State University
3 Vilnius University
4 Department of Mathematics and Physics, Second University of Naples, Italy

Реферат: We study the nonhomogeneous boundary value problem for the Navier-Stokes equations of steady motion of a viscous incompressible fluid in arbitrary bounded multiply connected plane or axially-symmetric spatial domains. (For axially symmetric domains, data is assumed to be axially symmetric as well.) We prove that this problem has a solution under the sole necessary condition of zero total flux through the boundary. The problem was formulated by Jean Leray 80 years ago. The proof of the main result uses Bernoulli's law for a weak solution to the Euler equations.
Библиографическая ссылка: Korobkov M. , Pileckas K. , Russo R.
Solution of Leray's problem for stationary Navier-Stokes equations in plane and axially symmetric spatial domains
Annals of Mathematics. 2014. P.769-807. DOI: 10.4007/annals.2015.181.2.7 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000352017600007
Scopus: 2-s2.0-84912038838
OpenAlex: W2962734697
Цитирование в БД:
БД Цитирований
Scopus 53
OpenAlex 65
Web of science 49
Альметрики: