Sciact
  • EN
  • RU

Approximation Algorithms for Open Shop Variations Subject to Energy Consumption Научная публикация

Журнал Proceedings of the Steklov Institute of Mathematics
ISSN: 0081-5438 , E-ISSN: 1531-8605
Вых. Данные Год: 2024, Том: 327, Страницы: S286–S301 Страниц : 15 DOI: 10.1134/S0081543824070216
Ключевые слова open shop, schedule, NP-hardness, algorithm.
Авторы Zakharova Yu.V. 1,2
Организации
1 Omsk Department of the Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Omsk, 644099 Russia
2 Dostoevsky Omsk State University, Omsk, 644077 Russia

Информация о финансировании (1)

1 Российский научный фонд 22-71-10015

Реферат: We consider the open shop scheduling problem subject to speed scaling and energy consumption. The computational complexity is analyzed and approaches to solving various versions of the problem are proposed. The algorithms use a two-stage scheduling scheme. At the first stage, bounds on the objective function and processing times of jobs are constructed. At the second stage, the speed scaling problem is reduced to the classical problem with fixed job speeds, and list-type methods are applied for scheduling. As a result, NP-hardness is proved in the general case, and polynomial-time exact and approximation algorithms are proposed for the practically important special cases when preemptions are allowed or not, when the set of speeds is discrete or continuous, and when energy consumption is bounded or optimized. A model of mixed-integer convex programming is constructed based on continuous time representation using the notion of event points.
Библиографическая ссылка: Zakharova Y.V.
Approximation Algorithms for Open Shop Variations Subject to Energy Consumption
Proceedings of the Steklov Institute of Mathematics. 2024. V.327. P.S286–S301. DOI: 10.1134/S0081543824070216 WOS Scopus РИНЦ OpenAlex
Оригинальная: Захарова Ю.В.
Приближенные алгоритмы для вариантов задачи open shop с учетом расхода энергии
Труды Института математики и механики УрО РАН (Trudy Instituta Matematiki i Mekhaniki UrO RAN). 2024. Т.30. №4. С.117-133. DOI: 10.21538/0134-4889-2024-30-4-117-133 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 6 окт. 2024 г.
Принята к публикации: 28 окт. 2024 г.
Опубликована в печати: 10 мар. 2025 г.
Опубликована online: 10 мар. 2025 г.
Идентификаторы БД:
Web of science: WOS:001447279100012
Scopus: 2-s2.0-105000060988
РИНЦ: 80438669
OpenAlex: W4408289256
Цитирование в БД: Пока нет цитирований
Альметрики: