Sciact
  • EN
  • RU

Monotone Operators in Vector Lattices and Lattice-Normed Spaces Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2025, Volume: 66, Number: 3, Pages: 826-831 Pages count : 6 DOI: 10.1134/S0037446625030188
Tags Riesz space, Banach lattice, lattice homomorphism, positive isometry, order isomorphism, lattice-normed space, Banach--Kantorovich space, Banach bundle, measurable section, lifting
Authors Gutman A.E. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0004

Abstract: We show that every monotone linear operator from a vector lattice to a lattice-normed space can be represented as the composition of a surjective lattice homomorphism and a linear isometry. We also give some applications to the theory of continuous and measurable bundles of Banach lattices.
Cite: Gutman A.E.
Monotone Operators in Vector Lattices and Lattice-Normed Spaces
Siberian Mathematical Journal. 2025. V.66. N3. P.826-831. DOI: 10.1134/S0037446625030188 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Mar 24, 2025
Accepted: Mar 26, 2025
Published print: Jun 2, 2025
Published online: Jun 2, 2025
Identifiers:
Web of science: WOS:001500903100012
Scopus: 2-s2.0-105007087295
Elibrary: 82395844
OpenAlex: W4410947156
Citing: Пока нет цитирований
Altmetrics: