Sciact
  • EN
  • RU

A Hybrid Local Search Algorithm for the Consistent Periodic Vehicle Routing Problem Научная публикация

Журнал Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797
Вых. Данные Год: 2020, Том: 14, Номер: 2, Страницы: 340-352 Страниц : 12 DOI: 10.1134/S199047892002012X
Ключевые слова penalty method, metaheuristic, Kernighan–Lin neighborhood, vehicle of limited capacity
Авторы Kulachenko I.N. 1 , Kononova P.A. 2
Организации
1 Novosibirsk State University
2 Sobolev institute of mathematics

Информация о финансировании (1)

1 Российский фонд фундаментальных исследований 19-47-540005

Реферат: Under consideration is some new real-world application of vehicle routing planning in a finite time horizon. Let a company have a set of capacitated vehicles in some depots and serve some set of customers. There is a frequency for each customer which describes how often the customer should be visited. Time intervals between two consecutive visits are fixed, but the visiting schedule is flexible. To obtain some competitive advantage, the company tries to increase the service quality. To this end, each customer should be visited by one driver only. The goal is to minimize the total length of the vehicle paths over the planning horizon under the frequency constraints and driver shift length constraints. We present a mixed-integer linear programming model for this new consistent capacitated vehicle routing problem. To find near optimal solutions, we design the variable neighborhood search metaheuristic with several neighborhood structures. The driver shift length and capacitated constraints are penalized and included into the objective function. Some numerical results for the real test instances are discussed.
Библиографическая ссылка: Kulachenko I.N. , Kononova P.A.
A Hybrid Local Search Algorithm for the Consistent Periodic Vehicle Routing Problem
Journal of Applied and Industrial Mathematics. 2020. V.14. N2. P.340-352. DOI: 10.1134/S199047892002012X Scopus OpenAlex
Даты:
Поступила в редакцию: 31 окт. 2019 г.
Принята к публикации: 19 февр. 2020 г.
Опубликована в печати: 10 июл. 2020 г.
Идентификаторы БД:
Scopus: 2-s2.0-85087779718
OpenAlex: W3036247172
Цитирование в БД:
БД Цитирований
Scopus 3
OpenAlex 5
Альметрики: