Sciact
  • EN
  • RU

New boundary value problems for fourth-order quasi-hyperbolic equations Научная публикация

Журнал Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Вых. Данные Год: 2019, Том: 16, Страницы: 1410-1436 Страниц : 27 DOI: 10.33048/SEMI.2019.16.098
Ключевые слова Existence; Fourth-order quasi-hyperbolic equations; Regular solutions; Uniqueness
Авторы Kozhanov A.I. 1 , Koshanov B. 2 , Sultangazieva J. 3
Организации
1 Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russian Federation
2 Institute of Mathematics and Mathematical Modeling, 125, Pushkin str., Almaty, 050010, Kazakhstan
3 Abai Pedagogical University, 13, Dostyk ave., Almaty, 050010, Kazakhstan

Реферат: In this paper, we study the correctness in the spaces of S.L. Sobolev of new boundary value problems for quasi-hyperbolic differential equations utttt + Au = f(x; t) (A is an elliptic operator acting on spatial variables). For the proposed tasks theorems on the existence and uniqueness of solutions are proved, and examples of non-uniqueness are given. © 2019 Sobolev Institute of Mathematics.
Библиографическая ссылка: Kozhanov A.I. , Koshanov B. , Sultangazieva J.
New boundary value problems for fourth-order quasi-hyperbolic equations
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2019. V.16. P.1410-1436. DOI: 10.33048/SEMI.2019.16.098 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000491070500002
Scopus: 2-s2.0-85083360601
OpenAlex: W3015893276
Цитирование в БД:
БД Цитирований
Scopus 7
OpenAlex 10
Web of science 7
Альметрики: