A note on Hameed's conjecture on the semi-transitivity of Mycielski graphs Научная публикация
Журнал |
Discussiones Mathematicae - Graph Theory
ISSN: 1234-3099 , E-ISSN: 2083-5892 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2025, DOI: 10.7151/dmgt.2575 | ||||||
Ключевые слова | semi-transitive graph, semi-transitive orientation, word-representable graph, Mycielski graph, extended Mycielski graph | ||||||
Авторы |
|
||||||
Организации |
|
Информация о финансировании (1)
1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0019 |
Реферат:
An orientation of a graph is semi-transitive if it contains no directed cycles and has no shortcuts. An undirected graph is semi-transitive if it can be oriented in a semi-transitive manner. The class of semi-transitive graphs includes several important graph classes. The Mycielski graph of an undirected graph is a larger graph constructed in a specific manner, which maintains the property of being triangle-free but increases the chromatic number. In this note, we prove Hameed’s conjecture, which states that the Mycielski graph of a graph G is semi-transitive if and only if G is a bipartite graph. Notably, our solution to the conjecture provides an alternative and shorter proof of the Hameed’s result on a complete characterization of semitransitive extended Mycielski graphs.
Библиографическая ссылка:
Kitaev S.
, Pyatkin A.V.
A note on Hameed's conjecture on the semi-transitivity of Mycielski graphs
Discussiones Mathematicae - Graph Theory. 2025. DOI: 10.7151/dmgt.2575 WOS OpenAlex
A note on Hameed's conjecture on the semi-transitivity of Mycielski graphs
Discussiones Mathematicae - Graph Theory. 2025. DOI: 10.7151/dmgt.2575 WOS OpenAlex
Даты:
Поступила в редакцию: | 7 окт. 2024 г. |
Принята к публикации: | 4 янв. 2025 г. |
Опубликована online: | 20 янв. 2025 г. |
Идентификаторы БД:
Web of science: | WOS:001401990000001 |
OpenAlex: | W4406677866 |
Цитирование в БД:
Пока нет цитирований