Sciact
  • EN
  • RU

Finite groups with few character values that are not character degrees Научная публикация

Журнал Journal of Pure and Applied Algebra
ISSN: 0022-4049
Вых. Данные Год: 2025, Том: 229, Номер: 7, Номер статьи : 107969, Страниц : 15 DOI: 10.1016/j.jpaa.2025.107969
Ключевые слова Character values, Character degrees, Derived length, Solvable groups, Non-solvable groups
Авторы Madanha Sesuai Y. , Mbaale Xavier , Mudziiri Shumba Tendai M.
Организации
1 Department of Mathematics and Applied Mathematics, University of Pretoria
2 Department of Mathematics and Statistics, University of Zambia
3 Sobolev Institute of Mathematics

Информация о финансировании (1)

1 Министерство науки и высшего образования РФ
Математический центр в Академгородке
075-15-2019-1613, 075-15-2022-281

Реферат: Let G be a finite group and χ ∈ Irr(G). Define cv(G)={χ(g) | χ ∈ Irr(G),g∈ G}, cv(χ)={χ(g) | g ∈ G} and denote by dl(G) the derived length of G. In the 1990s Berkovich, Chillag and Zhmud described groups G in which |cv(χ)| =3for every non-linear χ ∈ Irr(G) and their results show that G is solvable. They also considered groups in which |cv(χ)| =4for some non-linear χ ∈ Irr(G). Continuing with their work, in this article, we prove that if |cv(χ)| ⩽ 4 for every non-linear χ ∈ Irr(G), then G is solvable. We also considered groups G such that |cv(G) \ cd(G)| =2. T. Sakurai classified these groups in the case when |cd(G)| =2. We show that G is solvable and we classify groups G when |cd(G)| ⩽ 4 or dl(G) ⩽ 3. It is interesting to note that these groups are such that |cv(χ)| ⩽ 4 for all χ ∈ Irr(G). Lastly, we consider finite groups G with |cv(G) \ cd(G)| =3. For nilpotent groups, we obtain a characterization which is also connected to the work of Berkovich, Chillag and Zhmud. For non-nilpotent groups, we obtain the structure of G when dl(G)=2.
Библиографическая ссылка: Madanha S.Y. , Mbaale X. , Mudziiri Shumba T.M.
Finite groups with few character values that are not character degrees
Journal of Pure and Applied Algebra. 2025. V.229. N7. 107969 :1-15. DOI: 10.1016/j.jpaa.2025.107969 Scopus OpenAlex
Даты:
Поступила в редакцию: 25 июл. 2024 г.
Принята к публикации: 13 мар. 2025 г.
Опубликована online: 11 апр. 2025 г.
Опубликована в печати: 17 июл. 2025 г.
Идентификаторы БД:
Scopus: 2-s2.0-105002813339
OpenAlex: W4409349056
Цитирование в БД: Пока нет цитирований
Альметрики: