Sciact
  • EN
  • RU

Jacobi numerical method for solving 3d continuation problem for wave equation Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2025, Volume: 22, Number: 1, Pages: 428-442 Pages count : 15 DOI: 10.33048/semi.2025.22.028
Tags continuation problem, ill-posed problem, 3D wave equation, numerical analysis, regularization, finite difference scheme
Authors Bakanov G. 1 , Chandragiri S. 2 , Shishlenin M.A. 2
Affiliations
1 Khoja Akhmet Yassawi International Kazakh-Turkish University
2 Sobolev Institute of Mathematics

Funding (1)

1 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: In this paper we consider an explicit finite difference scheme to solve an ill-posed continuation problem for the 3D wave equation with the data given on the part of the boundary. We reduce the problem to a system of linear algebraic equations and implement the numerical solution using an iterative solver and discuss an efficient solution to a dense system of linear equations. We use the Jacobi iteration method for solving the linear system to improve computational efficiency and the results of convergence of the proposed method. Numerical experiments are presented.
Cite: Bakanov G. , Chandragiri S. , Shishlenin M.A.
Jacobi numerical method for solving 3d continuation problem for wave equation
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2025. V.22. N1. P.428-442. DOI: 10.33048/semi.2025.22.028
Dates:
Submitted: Feb 10, 2025
Published print: Apr 25, 2025
Published online: Apr 25, 2025
Identifiers: No identifiers
Citing: Пока нет цитирований
Altmetrics: