Yang–Baxter equation and representations of the virtual braid group Научная публикация
Журнал |
Journal of Algebra and its Applications
ISSN: 0219-4988 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2025, Номер статьи : 2650213, Страниц : 21 DOI: 10.1142/s0219498826502130 | ||||||
Ключевые слова | Yang–Baxter equation, braid equation, linear solution, set-theoretic solution, virtual pure braid group, representation of the virtual braid group, doubling, simplicial group | ||||||
Авторы |
|
||||||
Организации |
|
Информация о финансировании (2)
1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0009 |
2 | Российский научный фонд | 20-71-10110 |
Реферат:
It is well known that a solution for the Yang–Baxter equation (YBE) or equivalently for the braid equation (BE) gives a representation of the braid group B n . This paper is devoted to the generalization of this result to the case of the virtual braid group, related to the theory of virtual knots and playing an important role in quantum field theories. In this paper we explore a connection between YBE and representations of the virtual braid group VB n . In particular, we show that any solution ( X , R ) for the YBE with invertible R defines a representation of the virtual pure braid group VP n , for any n ≥ 2 , into Aut ( X ⊗ n ) for linear solution and into Sym ( X n ) for set-theoretic solution. Any solution of the BE with invertible R gives a representation of a normal subgroup H n of VB n . As a consequence of these two results we get that any invertible solution for the BE or YBE gives a representation of VB n . We also elaborate the technique of the group Y n connected with the problem of extension of YBE solutions, that is the construction of the YBE solution on the direct product B × C by solutions on the factors ( B , R B ) and ( C , R C ) .
Библиографическая ссылка:
Bardakov V.G.
, Talalaev D.V.
Yang–Baxter equation and representations of the virtual braid group
Journal of Algebra and its Applications. 2025. 2650213 :1-21. DOI: 10.1142/s0219498826502130 WOS Scopus OpenAlex
Yang–Baxter equation and representations of the virtual braid group
Journal of Algebra and its Applications. 2025. 2650213 :1-21. DOI: 10.1142/s0219498826502130 WOS Scopus OpenAlex
Даты:
Поступила в редакцию: | 8 мар. 2023 г. |
Принята к публикации: | 27 мар. 2025 г. |
Опубликована в печати: | 25 апр. 2025 г. |
Опубликована online: | 25 апр. 2025 г. |
Идентификаторы БД:
Web of science: | WOS:001477521100001 |
Scopus: | 2-s2.0-105003831128 |
OpenAlex: | W4409897456 |
Цитирование в БД:
Пока нет цитирований