Sciact
  • EN
  • RU

Convexification for the 3D Problem of Travel Time Tomography Full article

Journal SIAM Journal on Scientific Computing
ISSN: 1064-8275 , E-ISSN: 1095-7197
Output data Year: 2025, Volume: 47, Number: 3, Pages: A1436-A1457 Pages count : DOI: 10.1137/24m1695336
Tags numerical solution, eikonal equation, geodesic lines, globally convergent numerical method, travel time tomography in 3d, coefficient inverse problem
Authors Klibanov Michael V. 1 , Li Jingzhi 2 , Romanov Vladimir G. 3 , Yang Zhipeng 4
Affiliations
1 Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223 USA.
2 Corresponding author. Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China.
3 Sobolev Institute of Mathematics, Novosibirsk 630090, Russian Federation.
4 School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, People’s Republic of China.

Funding (1)

1 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: The travel time tomography problem is a coefficient inverse problem for the eikonal equation. Applications of this problem in the field of seismology are well known. The eikonal equation is considered here in the circular cylinder, where point sources run along its axis and measurements of travel times are conducted on the whole surface of this cylinder. A new version of the globally convergent convexification numerical method for this problem is developed. Results of numerical studies are presented.
Cite: Klibanov M.V. , Li J. , Romanov V.G. , Yang Z.
Convexification for the 3D Problem of Travel Time Tomography
SIAM Journal on Scientific Computing. 2025. V.47. N3. P.A1436-A1457. DOI: 10.1137/24m1695336 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:001485002900005
Scopus: 2-s2.0-105004728287
OpenAlex: W4410045496
Citing: Пока нет цитирований
Altmetrics: