Sciact
  • EN
  • RU

Convexification for the 3D Problem of Travel Time Tomography Научная публикация

Журнал SIAM Journal on Scientific Computing
ISSN: 1064-8275 , E-ISSN: 1095-7197
Вых. Данные Год: 2025, Том: 47, Номер: 3, Страницы: A1436-A1457 Страниц : DOI: 10.1137/24m1695336
Ключевые слова numerical solution, eikonal equation, geodesic lines, globally convergent numerical method, travel time tomography in 3d, coefficient inverse problem
Авторы Klibanov Michael V. 1 , Li Jingzhi 2 , Romanov Vladimir G. 3 , Yang Zhipeng 4
Организации
1 Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223 USA.
2 Corresponding author. Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China.
3 Sobolev Institute of Mathematics, Novosibirsk 630090, Russian Federation.
4 School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, People’s Republic of China.

Информация о финансировании (1)

1 Министерство науки и высшего образования РФ
Математический центр в Академгородке
075-15-2019-1613, 075-15-2022-281

Реферат: The travel time tomography problem is a coefficient inverse problem for the eikonal equation. Applications of this problem in the field of seismology are well known. The eikonal equation is considered here in the circular cylinder, where point sources run along its axis and measurements of travel times are conducted on the whole surface of this cylinder. A new version of the globally convergent convexification numerical method for this problem is developed. Results of numerical studies are presented.
Библиографическая ссылка: Klibanov M.V. , Li J. , Romanov V.G. , Yang Z.
Convexification for the 3D Problem of Travel Time Tomography
SIAM Journal on Scientific Computing. 2025. V.47. N3. P.A1436-A1457. DOI: 10.1137/24m1695336 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:001485002900005
Scopus: 2-s2.0-105004728287
OpenAlex: W4410045496
Цитирование в БД: Пока нет цитирований
Альметрики: