Sciact
  • EN
  • RU

Links and Dynamics Научная публикация

Журнал Russian Journal of Nonlinear Dynamics
ISSN: 2658-5324 , E-ISSN: 2658-5316
Вых. Данные Год: 2025, Том: 21, Номер: 1, Страницы: 69–83 Страниц : 15 DOI: 10.20537/nd241004
Ключевые слова knot, link, equivalence class of links, braid, mixed braid, fundamental quandle, handlebody, 3-manifold
Авторы Bardakov V.G. 1,2,3,4 , Kozlovskaya T.A. 1 , Pochinka O.V. 5
Организации
1 Regional Scientific and Educational Mathematical Center of Tomsk State University
2 Sobolev Institute of Mathematics
3 Novosibirsk State University
4 Novosibirsk State Agrarian University
5 National Research University– Higher School of Economics

Информация о финансировании (1)

1 Министерство науки и высшего образования РФ 075-02-2024-1437

Реферат: Knots naturally appear in continuous dynamical systems as flow periodic trajectories. However, discrete dynamical systems are also closely connected with the theory of knots and links. For example, for Pixton diffeomorphisms, the equivalence class of the Hopf knot, which is the orbit space of the unstable saddle separatrix in the manifold S2×S1, is a complete invariant of the topological conjugacy of the system. In this paper we distinguish a class of three-dimensional Morse--Smale diffeomorphisms for which the complete invariant of topological conjugacy is the equivalence class of a link in S2×S1. We prove that if M is a link complement in S3, or a handlebody Hg of genus g≥0, or a closed, connected, orientable 3-manifold, then the set of equivalence classes of tame links in M is countable. As a corollary, we prove that there exists a countable number of equivalence classes of tame links in S2×S1. It is proved that any essential link can be realized by a diffeomorphism of the class under consideration.
Библиографическая ссылка: Bardakov V.G. , Kozlovskaya T.A. , Pochinka O.V.
Links and Dynamics
Russian Journal of Nonlinear Dynamics. 2025. V.21. N1. P.69–83. DOI: 10.20537/nd241004 Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 16 мая 2024 г.
Принята к публикации: 7 авг. 2024 г.
Опубликована в печати: 28 апр. 2025 г.
Опубликована online: 28 апр. 2025 г.
Идентификаторы БД:
Scopus: 2-s2.0-105002439886
РИНЦ: 81021680
OpenAlex: W4403406618
Цитирование в БД: Пока нет цитирований
Альметрики: