Sciact
  • EN
  • RU

Sub-Lorentz geodesics on GL^{+}(2,C) with the generating space of Hermitian matrices in the Lie algebra gl^{+}(2,C) Full article

Journal Pure and Applied Functional Analysis
ISSN: 2189-3756 , E-ISSN: 2189-3764
Output data Year: 2025, Volume: 10, Number: 2, Pages: 211--238 Pages count : 28
Tags Hermitian matrix, Pauli matrices, Pontryagin minimum principle, Riemannian symmetric space, sub-Lorentzian (ab)normal extremal, sub-Lorentzian geodesic, sub-Lorentzian longest arc,
Authors Berestovskii Valera 1 , Zubareva Irina 2
Affiliations
1 Sobolev Institute of Mathematics, of the SB RAS, 4 Koptyug av., Novosibirsk, 630090, Russia
2 Sobolev Institute of Mathematics of the SB RAS, 13 Pevtsova st., Omsk, 644099, Russia

Funding (2)

1 Sobolev Institute of Mathematics FWNF-2022-0006
2 Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». FWNF-2022-0003

Abstract: The Lie subgroup GL^{+}(2,C) of all matrices in the Lie group GL(2,C) with positive real determinant is equipped with a left-invariant sub-Lorentzian (anti)metric, defined by the natural structure of the 4-dimensional Minkowski space-time on the subspace of Hermitian matrices in its Lie algebra. On base of the corresponding time-anti-optical control problem, formulated in the paper, and Pontryagin minimum principle for it, using geoesics and shortest arcs of the corresponding left-invariant sub-Riemannian metric on the Lie subgroup SL(2,C), the authors found sub-Lorentzian nonspacelike geodesics and longest arcs.
Cite: Berestovskii V. , Zubareva I.
Sub-Lorentz geodesics on GL^{+}(2,C) with the generating space of Hermitian matrices in the Lie algebra gl^{+}(2,C)
Pure and Applied Functional Analysis. 2025. V.10. N2. P.211--238.
Dates:
Submitted: Oct 27, 2023
Accepted: Jan 24, 2024
Published print: May 13, 2025
Published online: May 13, 2025
Identifiers: No identifiers
Citing: Пока нет цитирований