Sciact
  • EN
  • RU

Twisted Virtual Braid Group Научная публикация

Журнал Journal of Knot Theory and its Ramifications
ISSN: 0218-2165
Вых. Данные Год: 2025, Номер статьи : 2550028, Страниц : 21 DOI: 10.1142/s0218216525500282
Ключевые слова Twisted virtual braid group; twisted virtual pure braid group; Reidemeister-Schreier method
Авторы Bardakov Valeriy G. 1 , Kozlovskaya Tatyana A. 2 , Negi Komal 3 , Prabhakar Madeti 3
Организации
1 Sobolev Institute of Mathematics
2 Regional Scientific and Educational Mathematical, Center of Tomsk State University
3 Department of Mathematics, IIT Ropar

Информация о финансировании (2)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0009
2 Фонд развития теоретической физики и математики «БАЗИС» 23-7-2-14-1

Реферат: In this paper, we study some subgroups and their decompositions in semi-direct product of the twisted virtual braid group TVBn. In particular, the twisted virtual pure braid group TVPn is the kernel of an epimorphism of TVBn onto the symmetric group Sn. We find the set of generators and defining relations for TVPn and show that TVBn =TVPn Sn. Further, we prove that TVPn is a semi-direct product of some subgroup and abelian group Zn 2. As a corollary, we get that the virtual pure braid group VPn is a subgroup of TVPn. Also, we construct some other epimorphism of TVBn onto Sn. Its kernel TVHn is an analogous of TVPn. We find its set of generators and define relations and construct their decomposition in a semi-direct product.
Библиографическая ссылка: Bardakov V.G. , Kozlovskaya T.A. , Negi K. , Prabhakar M.
Twisted Virtual Braid Group
Journal of Knot Theory and its Ramifications. 2025. 2550028 :1-21. DOI: 10.1142/s0218216525500282 WOS OpenAlex
Даты:
Поступила в редакцию: 10 окт. 2023 г.
Принята к публикации: 26 мар. 2025 г.
Опубликована online: 21 мая 2025 г.
Идентификаторы БД:
Web of science: WOS:001494040100001
OpenAlex: W4409170582
Цитирование в БД: Пока нет цитирований
Альметрики: