Hyperbolic and Euclidean structures on cone-manifolds over trefoil knot with a bridge Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2025, Volume: 66, Number: 3, Pages: 800-811 Pages count : 12 DOI: 10.1134/S0037446625030164 | ||||||||
Tags | cone-manifold, Euclidean structure, hyperbolic structure, volume, trefoil knot | ||||||||
Authors |
|
||||||||
Affiliations |
|
Funding (2)
1 | Sobolev Institute of Mathematics | FWNF-2022-0005 |
2 | Министерство науки и высшего образования РФ | 075-02-2025-1728/2 |
Abstract:
We study cone-manifolds whose singular set is the trefoil knot with a bridge and whose underlying space is the 3-dimensional sphere. We also establish necessary and sufficient conditions for the existence of such manifolds in both Euclidean and hyperbolic geometries, and derive explicit volume formulas in each case.
Cite:
Abrosimov N.V.
, Grunwald L.A.
, Mednykh A.D.
, Qutbaev A.B.
, Vuong B.
Hyperbolic and Euclidean structures on cone-manifolds over trefoil knot with a bridge
Siberian Mathematical Journal. 2025. V.66. N3. P.800-811. DOI: 10.1134/S0037446625030164 WOS Scopus РИНЦ OpenAlex
Hyperbolic and Euclidean structures on cone-manifolds over trefoil knot with a bridge
Siberian Mathematical Journal. 2025. V.66. N3. P.800-811. DOI: 10.1134/S0037446625030164 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Jan 30, 2025 |
Accepted: | Apr 25, 2025 |
Published print: | Jun 2, 2025 |
Published online: | Jun 2, 2025 |
Identifiers:
Web of science: | WOS:001500903100009 |
Scopus: | 2-s2.0-105007135344 |
Elibrary: | 82395842 |
OpenAlex: | W4410947128 |
Citing:
Пока нет цитирований