Sciact
  • EN
  • RU

An inverse problem for nonlinear electrodynamic equations Научная публикация

Журнал Journal of Inverse and Ill-Posed Problems
ISSN: 0928-0219 , E-ISSN: 1569-3945
Вых. Данные Год: 2025, DOI: 10.1515/jiip-2025-0037
Ключевые слова Maxwell equations; inverse problem; tomography; integral geometry; stability
Авторы Romanov Vladimir G. 1
Организации
1 Sobolev Institute of Mathematics, Siberian Division of Russian Academy of Sciences

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0009

Реферат: An inverse problem for electrodynamic equations is considered. It is assumed that the electric current depends nonlinearly of the electric tension. This dependence is determined by seven finite functions of space variables. A direct problem for electrodynamic equations with a running plane wave going in direction ν from infinity is stated. Then traces of solutions of this direct problem on some bounded surface in R3 for different ν are used for posing an inverse problem. It is shown that the inverse problem is decomposed in seven separate problems. One of them is the X-ray tomography problem while 6 others are identical one to other integral geometry problems on a family of strait lines with a given weight function. The latter problems are studied and a stability estimate of solutions is found.
Библиографическая ссылка: Romanov V.G.
An inverse problem for nonlinear electrodynamic equations
Journal of Inverse and Ill-Posed Problems. 2025. DOI: 10.1515/jiip-2025-0037
Даты:
Опубликована online: 17 июн. 2025 г.
Идентификаторы БД: Нет идентификаторов
Цитирование в БД: Пока нет цитирований
Альметрики: