Sciact
  • EN
  • RU

Normal operators for momentum ray transforms, II: Saint Venant operators Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2025, Volume: 21, Number: 1, Pages: 650-661 Pages count : 12 DOI: 10.33048/semi.2025.22.042
Tags ray transform, inverse problems, Saint-Venant operator, tensor tomography, momentum ray transform
Authors Jathar Shubham R. 1 , Kar Manas 1 , Krishnan Venkateswaran P. 2 , Shatafutdinov Vladimir A. 3
Affiliations
1 Indian Institute of Science Education and Research Bhopal
2 Tata Institute of Fundamental Research
3 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0006

Abstract: The momentum ray transform Ik m integrates a rank m symmetric tensor eld f on Rn over lines with the weight tk, Ik mf(x,ξ) = ∞ −∞ tk⟨f(x + tξ),ξm⟩dt. Let Nk m = (Ik m)∗Ik m be the normal operator of Ik m. To what extent is a symmetric m-tensor eld f determined by the data (N0 mf,...,Nr mf) for some 0 ≤ r ≤ m? The Saint Venant operator Wr m is a linear di erential operator of order m−r with constant coe cients on the space of symmetric m-tensor elds. We derive an explicit formula expressing Wr mf in terms of (N0 mf,...,Nr mf). The tensor eld Wr mf represents the full local information on f that can be extracted from the data (N0 mf,...,Nr mf)
Cite: Jathar S.R. , Kar M. , Krishnan V.P. , Shatafutdinov V.A.
Normal operators for momentum ray transforms, II: Saint Venant operators
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2025. V.21. N1. P.650-661. DOI: 10.33048/semi.2025.22.042
Dates:
Submitted: Aug 21, 2024
Published print: Jul 4, 2025
Published online: Jul 4, 2025
Identifiers: No identifiers
Citing: Пока нет цитирований
Altmetrics: