Sciact
  • EN
  • RU

Application of Taylor’s Formula to Polynomial Approximation of a Function of Two Variables with Large Gradients Научная публикация

Журнал Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126
Вых. Данные Год: 2025, Том: 35, Номер: 1, Страницы: 87-92 Страниц : 6 DOI: 10.1134/s1055134425010079
Ключевые слова function of two variables, Taylor’s formula, large gradient, approximation formula taking into account the boundary layer component, error estimate
Авторы Zadorin A.I. 1
Организации
1 Sobolev Institute of Mathematics

Информация о финансировании (1)

1 Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». FWNF-2022-0016

Реферат: We consider approximation of a function of two variables with large gradients in a neighborhood of a point on the basis of Taylor’s formula. If the derivatives of this function are not bounded by a constant then the error of such an approximation can be significant. We represent the function as the sum of the regular and boundary layer components. Such a representation exists, for example, for solutions of singularly perturbed elliptic problems. The boundary layer component is regarded as a function of a general form. It is determined up to a factor and causes large gradientsof the function. We suggest to improve the accuracy of approximation on the basis of Taylor’s formula by constructing formulas that are exact on the boundary layer component. We prove that, in this case, the error estimate is independent of the derivatives of the boundary layer component.
Библиографическая ссылка: Zadorin A.I.
Application of Taylor’s Formula to Polynomial Approximation of a Function of Two Variables with Large Gradients
Siberian Advances in Mathematics. 2025. V.35. N1. P.87-92. DOI: 10.1134/s1055134425010079 Scopus РИНЦ OpenAlex
Оригинальная: Задорин А.И.
Применение формулы Тейлора для приближения многочленами функции двух переменных с большими градиентами
Математические труды. 2024. Т.27. №4. С.81-92. DOI: 10.25205/1560-750X-2024-27-4-81-92 РИНЦ
Даты:
Поступила в редакцию: 18 сент. 2024 г.
Принята к публикации: 30 окт. 2024 г.
Опубликована в печати: 19 мар. 2025 г.
Опубликована online: 4 июл. 2025 г.
Идентификаторы БД:
Scopus: 2-s2.0-105010141783
РИНЦ: 82581690
OpenAlex: W4412028542
Цитирование в БД: Пока нет цитирований
Альметрики: