Sciact
  • EN
  • RU

Rota–Baxter operators of weight zero on the matrix algebra of order three without unit in kernel Full article

Journal Journal of Algebra
ISSN: 0021-8693 , E-ISSN: 1090-266X
Output data Year: 2025, Volume: 683, Pages: 253-277 Pages count : 25 DOI: 10.1016/j.jalgebra.2025.06.019
Tags Rota–Baxter operator, Matrix algebra
Authors Gubarev Vsevolod 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0002

Abstract: We describe all Rota–Baxter operators R of weight zero on the matrix algebra M3(F) over a quadratically closed field F of characteristic not 2 or 3 such that R(1) = 0. Thus, we get a partial classification of solutions to the associative Yang-Baxter equation on M3(F). For the solution, the computer algebra system Singular was involved.
Cite: Gubarev V.
Rota–Baxter operators of weight zero on the matrix algebra of order three without unit in kernel
Journal of Algebra. 2025. V.683. P.253-277. DOI: 10.1016/j.jalgebra.2025.06.019 WOS Scopus OpenAlex
Dates:
Submitted: Dec 6, 2024
Published online: Jul 2, 2025
Published print: Jul 8, 2025
Identifiers:
Web of science: WOS:001529863200004
Scopus: 2-s2.0-105009849077
OpenAlex: W4411956640
Citing: Пока нет цитирований
Altmetrics: