A Branch, Bound, and Cuts Algorithm for the Dynamic Competitive Facility Location Problem Научная публикация
Журнал |
Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2024, Том: 18, Номер: 4, Страницы: 643-655 Страниц : 13 DOI: 10.1134/s1990478924040021 | ||||
Ключевые слова | competitive facility location problem, bilevel mathematical programming, exact method, Stackelberg game | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (1)
1 | Российский научный фонд | 23-21-00082 |
Реферат:
We consider a dynamic competitive facility location problem modeling an interaction of two competing parties (Leader and Follower) who place their facilities within a planning horizon split into several time periods. The Leader is assumed to open his/her facilities at the beginning of the planning horizon and does not change his/her decision later, while the Follower can modify his/her choice within each time period. We propose an algorithm that computes the best Leader’s decision and is built on the base of the branch-and-bound computational scheme. To compute upper bounds, a special relaxation of the initial bilevel problem strengthened with additional constraints (cuts) is used. The paper describes the construction of these constraints while utilizing auxiliary optimization problems; this provides the strongest cuts. On an instance of a dynamic competitive facility location on a network with three vertices, we demonstrate that the model is capable to take into account information regarding the changes of problem’s parameters along the time period. An implementation of the branch-and-bound algorithm shows a significant benefit from using the cuts specially designed for dynamic competitive models: it improves the upper bound’s quality and reduces the number of nodes in the branching tree
Библиографическая ссылка:
Beresnev V.L.
, Melnikov A.A.
A Branch, Bound, and Cuts Algorithm for the Dynamic Competitive Facility Location Problem
Journal of Applied and Industrial Mathematics. 2024. V.18. N4. P.643-655. DOI: 10.1134/s1990478924040021 Scopus РИНЦ OpenAlex
A Branch, Bound, and Cuts Algorithm for the Dynamic Competitive Facility Location Problem
Journal of Applied and Industrial Mathematics. 2024. V.18. N4. P.643-655. DOI: 10.1134/s1990478924040021 Scopus РИНЦ OpenAlex
Оригинальная:
Береснев В.Л.
, Мельников А.А.
Алгоритм ветвей, границ и отсечений для неявной динамической задачи конкурентного размещения
Дискретный анализ и исследование операций. 2024. Т.31. №4. С.5–26. DOI: 10.33048/daio.2024.31.814 РИНЦ
Алгоритм ветвей, границ и отсечений для неявной динамической задачи конкурентного размещения
Дискретный анализ и исследование операций. 2024. Т.31. №4. С.5–26. DOI: 10.33048/daio.2024.31.814 РИНЦ
Даты:
Поступила в редакцию: | 18 окт. 2024 г. |
Принята к публикации: | 1 нояб. 2024 г. |
Опубликована в печати: | 25 дек. 2024 г. |
Опубликована online: | 11 июл. 2025 г. |
Идентификаторы БД:
Scopus: | 2-s2.0-105010543907 |
РИНЦ: | 82621651 |
OpenAlex: | W4412194792 |
Цитирование в БД:
Пока нет цитирований