Sciact
  • EN
  • RU

New Properties of Composition Operators in Sobolev Spaces on Riemannian Manifolds Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2025, Volume: 66, Number: 4, Pages: 914-927 Pages count : 14 DOI: 10.1134/s0037446625040044
Tags Riemannian space, class of Sobolev mappings with values in a metric space, approximate differentiability, distortion of a mapping, generalized quasiconformal mapping, composition operator
Authors Vodopyanov S.K. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0006

Abstract: An equivalent description is obtained for homeomorphisms ϕ of a domain Ω in a Riemannian space M onto a metric space Y, which guarantees the boundedness of the composition operator from the space of Lipschitz functions Lip(Y) into the homogeneous Sobolev space on M with first generalized derivatives integrable to the power 1 ≤ q ≤ ∞, along with other new properties of such homeomorphisms. The new approach makes it possible to effectively prove a theorem on homeomorphisms of domains in an arbitrary Riemannian space M that induce a bounded composition operator between Sobolev spaces with first generalized derivatives. The new proof, which is considerably shorter compared to the original one, relies on a minimal set of tools and allows us to establish new properties of the homeomorphisms under study.
Cite: Vodopyanov S.K.
New Properties of Composition Operators in Sobolev Spaces on Riemannian Manifolds
Siberian Mathematical Journal. 2025. V.66. N4. P.914-927. DOI: 10.1134/s0037446625040044 WOS Scopus РИНЦ OpenAlex
Original: Водопьянов С.К.
Новые свойства операторов композиции в пространствах Соболева на римановых многообразиях
Сибирский математический журнал. 2025. Т.66. №4. С.596-612. DOI: 10.33048/smzh.2025.66.404 РИНЦ
Dates:
Submitted: Apr 4, 2025
Accepted: May 26, 2025
Published print: Jul 23, 2025
Published online: Jul 23, 2025
Identifiers:
Web of science: WOS:001535187000002
Scopus: 2-s2.0-105011258064
Elibrary: 82650975
OpenAlex: W4412610240
Citing: Пока нет цитирований
Altmetrics: