Sciact
  • EN
  • RU

Numerical Implementation of Boundary Conditions for Finite Difference Method on Staggered Grid for Wave Propagation in Saturated Porous Medium Научная публикация

Конференция Computational Science and Its Applications
30 июн. - 3 июл. 2025 , Istanbul
Сборник Computational Science and Its Applications (ICCSA 2025 Workshops) : Proceedings
Сборник, Springer Cham. Switzerland.2026. 462 c. ISBN 978-3-031-97596-7.
Журнал Lecture Notes in Computer Science
ISSN: 0302-9743 , E-ISSN: 1611-3349
Вых. Данные Год: 2025, Том: 15888, Страницы: 359-375 Страниц : 17 DOI: 10.1007/978-3-031-97596-7_24
Ключевые слова Wavefield simulation, Fluid saturated porous medium, Boundary conditions, Staggered grid finite difference scheme
Авторы Reshetova Galina 1 , Romenski Evgeniy 2
Организации
1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS
2 Sobolev Institute of Mathematics SB RAS

Информация о финансировании (2)

1 Российский научный фонд 19-77-20004-П
2 Институт вычислительной математики и математической геофизики СО РАН FWNM-2025-0004

Реферат: This paper presents a numerical implementation of boundary conditions in the finite difference staggered grid method for a Hyperbolic Thermodynamically Compatible (HTC) model of wavefields simulations in a three-phase model of a deformable porous medium saturated with a mixture of two fluids. A number of test problems on the propagation of high-frequency waves have been solved and it has been shown that the developed numerical method is applicable to non-stationary processes in domains of complex structure. The method can also be applied to obtain a steady-state solution of the equilibrium equations of a saturated porous medium by solving a nonstationary system.
Библиографическая ссылка: Reshetova G. , Romenski E.
Numerical Implementation of Boundary Conditions for Finite Difference Method on Staggered Grid for Wave Propagation in Saturated Porous Medium
В сборнике Computational Science and Its Applications (ICCSA 2025 Workshops) : Proceedings. – Springer Cham., 2025. – Т.Part III. – C.359-375. – ISBN 978-3-031-97596-7. DOI: 10.1007/978-3-031-97596-7_24 Scopus OpenAlex
Даты:
Опубликована в печати: 28 мая 2025 г.
Опубликована online: 28 мая 2025 г.
Идентификаторы БД:
Scopus: 2-s2.0-105010818967
OpenAlex: W4412058980
Цитирование в БД: Пока нет цитирований
Альметрики: