Sciact
  • EN
  • RU

Spectral Decomposition to Solve the Elasticity Problem in Quasi-static Formulation Научная публикация

Конференция Computational Science and Its Applications
30 июн. - 3 июл. 2025 , Istanbul
Сборник Computational Science and Its Applications (ICCSA 2025 Workshops) : Proceedings
Сборник, Springer Cham. Switzerland.2026. 462 c. ISBN 978-3-031-97596-7.
Журнал Lecture Notes in Computer Science
ISSN: 0302-9743 , E-ISSN: 1611-3349
Вых. Данные Год: 2025, Том: 15888, Страницы: 343-358 Страниц : 16 DOI: 10.1007/978-3-031-97596-7_23
Ключевые слова Poroelasticity, Biot equation, Elasticity · finite differences, Laplace operator, spectral decomposition, SLAE, iterative methods, HPC, shared memory systems
Авторы Solovyev Sergey 1 , Lisitsa Vadim 1
Организации
1 Institute of Mathematics SB RAS

Информация о финансировании (1)

1 Российский научный фонд 19-77-20004-П

Реферат: In this paper we consider the problem of numerical solution of the boundary value problem of the theory of elasticity in static formulation in a rectangle with arbitrary boundary conditions. For this purpose, we use the approach of splitting in the direction of the Laplace operator based on its spectral decomposition, which is similar to the discrete Fourier transform but does not require periodicity of the boundary conditions. A fast matrix-to-vector multiplication algorithm is proposed using an efficiently software-implemented matrix multiplication algorithm. Numerical experiments are performed to show the effectiveness of the proposed method with the ability to solve the elasticity problem on a mesh of .109 nodes on systems with 128G RAM.
Библиографическая ссылка: Solovyev S. , Lisitsa V.
Spectral Decomposition to Solve the Elasticity Problem in Quasi-static Formulation
В сборнике Computational Science and Its Applications (ICCSA 2025 Workshops) : Proceedings. – Springer Cham., 2025. – Т.Part III. – C.343-358. – ISBN 978-3-031-97596-7. DOI: 10.1007/978-3-031-97596-7_23 Scopus OpenAlex
Даты:
Опубликована в печати: 28 мая 2025 г.
Опубликована online: 28 мая 2025 г.
Идентификаторы БД:
Scopus: 2-s2.0-105010829926
OpenAlex: W4412059035
Цитирование в БД: Пока нет цитирований
Альметрики: