Sciact
  • EN
  • RU

Monitoring CO2 in Seismic Data Using Neural Network Научная публикация

Конференция Computational Science and Its Applications
30 июн. - 3 июл. 2025 , Istanbul
Сборник Computational Science and Its Applications (ICCSA 2025 Workshops) : Proceedings
Сборник, Springer Cham. Switzerland.2026. 462 c. ISBN 978-3-031-97596-7.
Журнал Lecture Notes in Computer Science
ISSN: 0302-9743 , E-ISSN: 1611-3349
Вых. Данные Год: 2025, Том: 15888, Страницы: 330-342 Страниц : 13 DOI: 10.1007/978-3-031-97596-7_22
Ключевые слова Deep Learning, Monitoring CO2, Seismic modeling
Авторы Gondyul Elena 1 , Lisitsa Vadim 1 , Vishnevsky Dmitry 1
Организации
1 Sobolev Institute of Mathematics SB RAS

Информация о финансировании (1)

1 Российский научный фонд 22-11-00004-П

Реферат: Accurate monitoring of .CO2 migration in subsurface reservoirs is critical for understanding the behavior of injected greenhouse gases. This study proposes a neural network-based approach to improve the accuracy of seismograms used in time-lapse seismic monitoring. The method consists of two stages: first, a neural network predicts changes in seismograms corresponding to velocity model variations between consecutive monitoring steps, allowing for the approximation of spatio-temporal dependencies and facilitating wavefield extrapolation. The seismograms at this stage are generated using a coarse computational grid to reduce computational costs. In the second stage, a neural network is employed to mitigate numerical dispersion in the predicted seismogram differences generated via classical modeling under the assumption of an unchanged velocity model. The trained network is then applied to all seismograms obtained in the first stage. This approach enables a more precise estimation of .CO2 migration patterns, providing valuable insights into subsurface dynamics. The proposed approach significantly accelerates seismic modeling and its application to monitoring greenhouse gases in reservoir rocks.
Библиографическая ссылка: Gondyul E. , Lisitsa V. , Vishnevsky D.
Monitoring CO2 in Seismic Data Using Neural Network
В сборнике Computational Science and Its Applications (ICCSA 2025 Workshops) : Proceedings. – Springer Cham., 2025. – Т.Part III. – C.330-342. – ISBN 978-3-031-97596-7. DOI: 10.1007/978-3-031-97596-7_22 Scopus OpenAlex
Даты:
Опубликована в печати: 28 мая 2025 г.
Опубликована online: 28 мая 2025 г.
Идентификаторы БД:
Scopus: 2-s2.0-105010829547
OpenAlex: W4412059130
Цитирование в БД: Пока нет цитирований
Альметрики: