Rota—Baxter operators on the simple Jordan algebra of matrices of order two Научная публикация
| Журнал |
Bulletin of the Malaysian Mathematical Sciences Society
ISSN: 0126-6705 , E-ISSN: 2180-4206 |
||||
|---|---|---|---|---|---|
| Вых. Данные | Год: 2025, Том: 48, Номер статьи : 147, Страниц : 12 DOI: 10.1007/s40840-025-01932-3 | ||||
| Ключевые слова | Rota—Baxter operator, matrix algebra, Jordan algebra | ||||
| Авторы |
|
||||
| Организации |
|
Информация о финансировании (1)
| 1 | Российский научный фонд | 23-71-10005 |
Реферат:
We describe all Rota—Baxter operators of any weight on the space of matrices from M2(F) considered under the product a ◦ b = (ab + ba)/2 and usually denoted as M2(F)(+). This algebra is known to be a simple Jordan one. We introduce symmetrized Rota—Baxter operators of weight λ and show that every Rota—Baxter operator of weight 0 on M2(F)(+) either is a Rota—Baxter operator of weight 0 on M2(F) or is a symmetrized Rota—Baxter operator of weight 0 on the same M2(F). We also prove that every Rota—Baxter operator of nonzero weight λ on M2(F)(+) is either a Rota— Baxter operator of weight λ on M2(F) or is, up to the action of φ : R → −R − λid, a symmetrized Rota—Baxter operator of weight λ on M2(F).
Библиографическая ссылка:
Gubarev V.
, Panasenko A.
Rota—Baxter operators on the simple Jordan algebra of matrices of order two
Bulletin of the Malaysian Mathematical Sciences Society. 2025. V.48. 147 :1-12. DOI: 10.1007/s40840-025-01932-3 WOS Scopus OpenAlex
Rota—Baxter operators on the simple Jordan algebra of matrices of order two
Bulletin of the Malaysian Mathematical Sciences Society. 2025. V.48. 147 :1-12. DOI: 10.1007/s40840-025-01932-3 WOS Scopus OpenAlex
Даты:
| Поступила в редакцию: | 20 февр. 2025 г. |
| Принята к публикации: | 8 июл. 2025 г. |
| Опубликована в печати: | 17 июл. 2025 г. |
| Опубликована online: | 17 июл. 2025 г. |
Идентификаторы БД:
| Web of science: | WOS:001530748000002 |
| Scopus: | 2-s2.0-105011051466 |
| OpenAlex: | W4413075624 |
Цитирование в БД:
Пока нет цитирований