Sciact
  • EN
  • RU

The Structure of the Characteristic Polynomial of the Laplacian Matrix for a Circulant Graph with Non-Fixed Jumps Full article

Journal Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126
Output data Year: 2025, Volume: 35, Number: 2, Pages: 146–155 Pages count : 10 DOI: 10.1134/S1055134425020063
Tags Circulant graph, rooted spanning forest, characteristic polynomial, Laplacian matrix
Authors Mednykh A.D. 1,2 , Mednykh I.A. 1,2 , Sokolova G.K. 1,2
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, 630090 Russia
2 Novosibirsk State University, Novosibirsk, 630090 Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0005

Abstract: We describe the structure of the characteristic polynomial χL of the Laplacian matrix for a circulant graph with non-fixed jumps. We represent the characteristic polynomial in the form of the product of algebraic functions involving roots of linear combinations of Chebyshev polynomials of the first kind. We show that χL is the product of the square of a polynomial with integer coefficients and explicitly described linear polynomials with integer coefficients. We suggest a formula for the number of rooted spanning forests in such a graph.
Cite: Mednykh A.D. , Mednykh I.A. , Sokolova G.K.
The Structure of the Characteristic Polynomial of the Laplacian Matrix for a Circulant Graph with Non-Fixed Jumps
Siberian Advances in Mathematics. 2025. V.35. N2. P.146–155. DOI: 10.1134/S1055134425020063 Scopus РИНЦ
Original: Медных А.Д. , Медных И.А. , Соколова Г.К.
Структура характеристического полинома матрицы Лапласа циркулянтного графа с нефиксированными скачками
Математические труды. 2025. Т.28. №1. С.94–112. DOI: 10.25205/1560-750X-2025-28-1-94-112 РИНЦ
Dates:
Submitted: Sep 18, 2024
Accepted: Oct 30, 2024
Published print: Aug 6, 2025
Published online: Aug 6, 2025
Identifiers:
Scopus: 2-s2.0-105012723246
Elibrary: 82714811
Citing: Пока нет цитирований
Altmetrics: