Moment Inequalities for the Sum of Weighted Independent Identically Distributed Random Variables Full article
Journal |
Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126 |
||
---|---|---|---|
Output data | Year: 2025, Volume: 35, Number: 2, Pages: 93-98 Pages count : 6 DOI: 10.1134/S1055134425020014 | ||
Tags | moment inequality, Khinchin inequality, independent random variables | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2024-0001 |
Abstract:
In the present article, we find lower and upper estimates for the moments of the infinite sum of weighted identically distributed random variables. These estimates generalize the well-known Khinchin inequalities.
Cite:
Arkashov N.S.
Moment Inequalities for the Sum of Weighted Independent Identically Distributed Random Variables
Siberian Advances in Mathematics. 2025. V.35. N2. P.93-98. DOI: 10.1134/S1055134425020014 Scopus РИНЦ
Moment Inequalities for the Sum of Weighted Independent Identically Distributed Random Variables
Siberian Advances in Mathematics. 2025. V.35. N2. P.93-98. DOI: 10.1134/S1055134425020014 Scopus РИНЦ
Original:
Аркашов Н.С.
Моментные неравенства для суммы взвешенных независимых одинаково распределенных случайных величин
Математические труды. 2025. Т.28. №2. С.18–27. DOI: 10.25205/1560-750X-2025-28-2-18-27 РИНЦ
Моментные неравенства для суммы взвешенных независимых одинаково распределенных случайных величин
Математические труды. 2025. Т.28. №2. С.18–27. DOI: 10.25205/1560-750X-2025-28-2-18-27 РИНЦ
Dates:
Submitted: | Jan 18, 2025 |
Accepted: | Apr 30, 2025 |
Published print: | Aug 6, 2025 |
Published online: | Aug 6, 2025 |
Identifiers:
Scopus: | 2-s2.0-105012758856 |
Elibrary: | 82714806 |
Citing:
Пока нет цитирований