Polynomials of complete spatial graphs and Jones polynomials of the related links Full article
Journal |
Sbornik Mathematics
ISSN: 1064-5616 , E-ISSN: 1468-4802 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2025, Volume: 216, Number: 5, Pages: 608-637 Pages count : 30 DOI: 10.4213/sm10167e | ||||||
Tags | graph, knot, spatial graph, Jones polynomial, Yamada polynomial, Jaeger polynomial. | ||||||
Authors |
|
||||||
Affiliations |
|
Funding (1)
1 | Министерство науки и высшего образования РФ | 075-02-2024-1437 |
Abstract:
A spatial Kn-graph is an embedding of a complete graph Kn with n vertices in a 3-sphere S3. Knots in a spatial Kn-graph corresponding to cycles of Kn are called constituent knots. We consider the case n = 4. The boundary of the orientable band surface constructed from a spatial K4-graph and having the zero Seifert form is a 4-component link, which is referred to as the associated link. We obtain formulae relating the normalized Yamada and Jaeger polynomials of spatial K4-graphs, their θ-subgraphs and cyclic subgraphs with the Jones polynomials of constituent knots and related links.
Cite:
Vesnin A.Y.
, Oshmarina O.A.
Polynomials of complete spatial graphs and Jones polynomials of the related links
Sbornik Mathematics. 2025. V.216. N5. P.608-637. DOI: 10.4213/sm10167e Scopus OpenAlex
Polynomials of complete spatial graphs and Jones polynomials of the related links
Sbornik Mathematics. 2025. V.216. N5. P.608-637. DOI: 10.4213/sm10167e Scopus OpenAlex
Original:
Веснин А.Ю.
, Ошмарина О.А.
Полиномы пространственных полных графов и полиномы Джонса связанных с ними зацеплений
Математический сборник. 2025. Т.216. №5. С.33-63. DOI: 10.4213/sm10167 РИНЦ OpenAlex
Полиномы пространственных полных графов и полиномы Джонса связанных с ними зацеплений
Математический сборник. 2025. Т.216. №5. С.33-63. DOI: 10.4213/sm10167 РИНЦ OpenAlex
Dates:
Submitted: | Jul 31, 2024 |
Identifiers:
Scopus: | 2-s2.0-105012516684 |
OpenAlex: | W4413075742 |
Citing:
Пока нет цитирований