Sciact
  • EN
  • RU

Billiard Trajectories inside Cones Full article

Journal Regular and Chaotic Dynamics
ISSN: 1560-3547 , E-ISSN: 1468-4845
Output data Year: 2025, Volume: 30, Number: 4, Pages: 688-710 Pages count : 23 DOI: 10.1134/s156035472504015x
Tags Birkhoff billiards, cone billiards
Authors Mironov Andrey E. 1 , Yin Siyao 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Министерство науки и высшего образования РФ 075-15-2025-348

Abstract: Recently it was proved that every billiard trajectory inside a C3 convex cone has a finite number of reflections. Here, by a C3 convex cone, we mean a cone whose section with some hyperplane is a strictly convex, closed C3 hypersurface of that hyperplane, with an everywhere nondegenerate second fundamental form. In this paper, we prove that there exist C2 convex cones with billiard trajectories that undergo infinitely many reflections in finite time. We also provide an estimation of the number of reflections for billiard trajectories inside elliptic cones in R3 using two first integrals.
Cite: Mironov A.E. , Yin S.
Billiard Trajectories inside Cones
Regular and Chaotic Dynamics. 2025. V.30. N4. P.688-710. DOI: 10.1134/s156035472504015x WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Apr 30, 2025
Accepted: Jun 11, 2025
Published print: Aug 11, 2025
Published online: Aug 11, 2025
Identifiers:
Web of science: WOS:001548326100014
Scopus: 2-s2.0-105013022662
Elibrary: 82740655
OpenAlex: W4413210661
Citing: Пока нет цитирований
Altmetrics: