Local high-degree polynomial integrals of geodesic flows and the generalized hodograph method Научная публикация
Журнал |
Journal of Geometry and Physics
ISSN: 0393-0440 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2025, Том: 217, Номер статьи : 105629, Страниц : 16 DOI: 10.1016/j.geomphys.2025.105629 | ||||
Ключевые слова | Integrable geodesic flow, Polynomial first integral, Semigeodesic coordinates, Semi-Hamiltonian system, Commuting flow, Generalized hodograph method | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (1)
1 | Российский научный фонд | 24-11-00281 |
Реферат:
We study Riemannian metrics on 2-surfaces with integrable geodesic flows such that an additional first integral is high-degree polynomial in momenta. This problem reduces to searching for solutions to certain quasi-linear systems of PDEs which turn out to be semi-Hamiltonian. We construct plenty of local explicit and implicit integrable examples with polynomial first integrals of degrees 3, 4, 5. Our construction is essentially based on applying the generalized hodograph method.
Библиографическая ссылка:
Agapov S.
Local high-degree polynomial integrals of geodesic flows and the generalized hodograph method
Journal of Geometry and Physics. 2025. V.217. 105629 :1-16. DOI: 10.1016/j.geomphys.2025.105629 WOS Scopus OpenAlex
Local high-degree polynomial integrals of geodesic flows and the generalized hodograph method
Journal of Geometry and Physics. 2025. V.217. 105629 :1-16. DOI: 10.1016/j.geomphys.2025.105629 WOS Scopus OpenAlex
Даты:
Поступила в редакцию: | 18 янв. 2025 г. |
Принята к публикации: | 13 авг. 2025 г. |
Опубликована online: | 20 авг. 2025 г. |
Опубликована в печати: | 26 авг. 2025 г. |
Идентификаторы БД:
Web of science: | WOS:001565869300001 |
Scopus: | 2-s2.0-105013961685 |
OpenAlex: | W4413407860 |
Цитирование в БД:
Пока нет цитирований