Sciact
  • EN
  • RU

Differential Epidemic Models and Scenarios of Restrictive Measures Full article

Journal Computational Mathematics and Mathematical Physics
ISSN: 0965-5425 , E-ISSN: 1555-6662
Output data Year: 2025, Volume: 65, Number: 6, Pages: 1300-1313 Pages count : 14 DOI: 10.1134/s0965542525700459
Tags SIR models, epidemiology, inverse problems, optimal control, Hamilton–Jacobi–Bellman equation, optimization, development scenarios
Authors Kabanikhin S.I. 1 , Krivorotko O.I. 1 , Neverov A.V. 1
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Funding (1)

1 Russian Science Foundation 23-71-10068

Abstract: Algorithms for calculating the spread of epidemics and analyzing the consequences of introducing or lifting restrictive measures based on an SIR model and the Hamilton–Jacobi–Bellman equations are considered. After studying the identifiability and sensitivity of SIR models, their wellposedness in the vicinity of the exact solution, and the convergence of numerical algorithms for solving direct and inverse problems, an optimal control problem is formulated. The results of numerical simulation showed that feedback control can help determine the vaccination policy. The use of physicsinformed neural networks (PINNs) made it possible to reduce the calculation time by five times, which is important for promptly changing restrictive measures.
Cite: Kabanikhin S.I. , Krivorotko O.I. , Neverov A.V.
Differential Epidemic Models and Scenarios of Restrictive Measures
Computational Mathematics and Mathematical Physics. 2025. V.65. N6. P.1300-1313. DOI: 10.1134/s0965542525700459 WOS Scopus РИНЦ OpenAlex
Original: Кабанихин С.И. , Криворотько О.И. , Неверов А.В.
Дифференциальные модели эпидемий и сценарии ограничительных мер
Журнал вычислительной математики и математической физики. 2025. Т.65. №6. С.946-960. DOI: 10.31857/S0044466925060081 РИНЦ
Dates:
Submitted: Jan 27, 2025
Accepted: Mar 27, 2025
Published print: Aug 6, 2025
Published online: Aug 6, 2025
Identifiers:
Web of science: WOS:001551465700006
Scopus: 2-s2.0-105012723822
Elibrary: 82714638
OpenAlex: W4413049662
Citing: Пока нет цитирований
Altmetrics: