Companion Matrix for Composition of Polynomials and Its Application to Knot Theory Full article
| Journal |
Doklady Mathematics
ISSN: 1064-5624 , E-ISSN: 1531-8362 |
||||||
|---|---|---|---|---|---|---|---|
| Output data | Year: 2025, Volume: 111, Number: 1, Pages: 36–43 Pages count : 8 DOI: 10.1134/S106456242460266X | ||||||
| Tags | Smith normal form, companion matrix, knot, homology group, branched covering | ||||||
| Authors |
|
||||||
| Affiliations |
|
Funding (1)
| 1 | Sobolev Institute of Mathematics | FWNF-2022-0005 |
Abstract:
A new formula is given for the companion matrix of the composition of two polynomials over a commutative ring. The results obtained are used to provide a constructive proof of Plans’ theorem for 2-bridge knots, which states that the first homology group of an odd-fold cyclic covering of a three-dimensional sphere branched over a given knot is the direct sum of two copies of some Abelian group. A similar result is also true for the homology of even-fold coverings factored by the reduced homology group of two-fold coverings. The structure of the above-mentioned Abelian groups is described through Chebyshev polynomials of the second and fourth kinds.
Cite:
Mednykh A.D.
, Mednykh I.A.
, Sokolova G.K.
Companion Matrix for Composition of Polynomials and Its Application to Knot Theory
Doklady Mathematics. 2025. V.111. N1. P.36–43. DOI: 10.1134/S106456242460266X WOS Scopus
Companion Matrix for Composition of Polynomials and Its Application to Knot Theory
Doklady Mathematics. 2025. V.111. N1. P.36–43. DOI: 10.1134/S106456242460266X WOS Scopus
Original:
Медных А.Д.
, Медных И.А.
, Соколова Г.К.
Сопровождающая матрица суперпозиции полиномов и ее применение к теории узлов
Доклады Академии наук. Серия: Математика, информатика, процессы управления. 2025. Т.521. №1. С.72–80. DOI: 10.31857/S2686954325010096 РИНЦ
Сопровождающая матрица суперпозиции полиномов и ее применение к теории узлов
Доклады Академии наук. Серия: Математика, информатика, процессы управления. 2025. Т.521. №1. С.72–80. DOI: 10.31857/S2686954325010096 РИНЦ
Dates:
| Submitted: | Dec 5, 2024 |
| Accepted: | Feb 17, 2025 |
| Published print: | Oct 17, 2025 |
| Published online: | Oct 17, 2025 |
Identifiers:
| Web of science: | WOS:001595668900009 |
| Scopus: | 2-s2.0-105019388562 |
Citing:
Пока нет цитирований