The critical group of the cone over a sandwich graph Full article
| Journal |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||
|---|---|---|---|
| Output data | Year: 2025, Volume: 22, Number: 2, Pages: 1255-1265 Pages count : 11 DOI: 10.33048/semi.2025.22.075 | ||
| Tags | critical group, circulant graph, discrete Laplacian, Smith normal form. | ||
| Authors |
|
||
| Affiliations |
|
Funding (1)
| 1 | Министерство науки и высшего образования РФ | FWNF-2026-0026 |
Abstract:
We study the critical group of the cone over a sandwich graph. It is shown that this group can be described as the cokernel of a discrete Laplace operator. Furthermore, we prove that its exact structure can be determined by making use of a recurrence relation derived from the Laplace operator. This relation involves symmetric Laurent polynomials and provides a more efficient way to compute the group. The proposed method offers a powerful tool for analyzing invariants of graphs with complex combinatorial structure.
Cite:
Grunwald L.A.
The critical group of the cone over a sandwich graph
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2025. V.22. N2. P.1255-1265. DOI: 10.33048/semi.2025.22.075 Scopus
The critical group of the cone over a sandwich graph
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2025. V.22. N2. P.1255-1265. DOI: 10.33048/semi.2025.22.075 Scopus
Dates:
| Submitted: | Jun 16, 2025 |
| Published print: | Oct 29, 2025 |
| Published online: | Oct 29, 2025 |
Identifiers:
| Scopus: | 2-s2.0-105022118707 |
Citing:
Пока нет цитирований