Sciact
  • EN
  • RU

Cauchy Problem for the Quasilinear Heat Conduction Equation in Fourier Images Научная публикация

Журнал Lobachevskii Journal of Mathematics
ISSN: 1995-0802 , E-ISSN: 1818-9962
Вых. Данные Год: 2025, Том: 46, Номер: 9, Страницы: 4534-4542 Страниц : 9
Ключевые слова quasilinear heat conduction equation, quadratic nonlinearity, integrodifferential equation, Fourier image, integral operator
Авторы Vaskevich V.L. 1 , Yan Wenyuan 2
Организации
1 Sobolev Institute of Mathematics of the Russian Academy of Sciences
2 Novosibirsk State University

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0008

Реферат: In this paper, we consider the Cauchy problem for the quasilinear heat conduction equation with a variable heat capacity coefficient and a heat transfer coefficient proportional to temperature. The Cauchy problem for the original equation is reduced to a dual problem for some integro-differential equation for the Fourier image of the desired solution with initial data on the positive semi-axis. Integration in the obtained equation for the Fourier image of the solution to the initial differential problem is performed over the first quadrant of the plane of independent variables. The bilinear integral operator in the obtained integro-differential equation has as a kernel a function of frequency variable and two non-negative integration variables. The kernel is explicitly expressed through the variable heat capacity coefficient of the original differential equation.
Библиографическая ссылка: Vaskevich V.L. , Yan W.
Cauchy Problem for the Quasilinear Heat Conduction Equation in Fourier Images
Lobachevskii Journal of Mathematics. 2025. V.46. N9. P.4534-4542.
Даты:
Поступила в редакцию: 15 мар. 2025 г.
Принята к публикации: 28 июл. 2025 г.
Идентификаторы БД: Нет идентификаторов
Цитирование в БД: Пока нет цитирований