Any random variable with right-unbounded distributional support is the minimum of independent and very heavy-tailed random variables Научная публикация
| Журнал |
Journal of Applied Probability
ISSN: 0021-9002 |
||||||||
|---|---|---|---|---|---|---|---|---|---|
| Вых. Данные | Год: 2025, DOI: 10.1017/jpr.2025.10058 | ||||||||
| Ключевые слова | Light tail; heavy tail; long tail; subexponentiality; minimum of random variables | ||||||||
| Авторы |
|
||||||||
| Организации |
|
Информация о финансировании (1)
| 1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0010 |
Реферат:
A random variable ξ has a light-tailed distribution (for short: is light-tailed) if it possesses a finite exponential moment, E exp(λξ) < ∞ for some λ > 0, and has a heavy-tailed distribution (is heavy-tailed) if E exp(λξ) = ∞, for all λ > 0. In [1], the authors presented a particular example of a light-tailed random variable that is the minimum of two independent heavy-tailed random variables. We will show that this phenomenon is universal: any light-tailed random variable with right-unbounded support may be represented as the minimum of two independent heavy-tailed random variables. Moreover, a more general fact holds: these two independent random variables may have as heavy-tailed distributions as one wishes. Further, we will extend the latter result onto the minimum of any finite number of independent random variables. We will also comment on possible generalizations of our result to the case of dependent random variables.
Библиографическая ссылка:
Foss S.
, Tarasenko A.S.
, Krivtsov G.
Any random variable with right-unbounded distributional support is the minimum of independent and very heavy-tailed random variables
Journal of Applied Probability. 2025. DOI: 10.1017/jpr.2025.10058
Any random variable with right-unbounded distributional support is the minimum of independent and very heavy-tailed random variables
Journal of Applied Probability. 2025. DOI: 10.1017/jpr.2025.10058
Даты:
| Поступила в редакцию: | 13 мая 2025 г. |
| Принята к публикации: | 2 сент. 2025 г. |
Идентификаторы БД:
Нет идентификаторов
Цитирование в БД:
Пока нет цитирований