Sciact
  • EN
  • RU

On the kernels of nonlinear quasi-perfect codes Тезисы доклада

Конференция Международная конференция "Мальцевские чтения"
10-14 нояб. 2025 , Новосибирск, ИМ СО РАН
Сборник Международная конференция МАЛЬЦЕВСКИЕ ЧТЕНИЯ 10–14 ноября 2025 г. Тезисы докладов
Сборник, 2025. 236 c.
Вых. Данные Год: 2025, Страницы: 81 Страниц : 1
Авторы Romanov A.M. 1
Организации
1 Sobolev Institute of Mathematics, SBRAS, Novosibirsk (Russia)

Реферат: In present paper, we propose a construction of 1-quasi-perfect $q$-ary codes with parameters of generalized Reed-Muller codes of order $r = (q -1)m - 2$, where $m$ is a positive integer. For $q \geq 3$, $m \geq 2$, the proposed construction allows one to construct nonlinear 1-quasi-perfect $q$-ary codes with different kernel dimensions. The dimensions of the kernel of nonlinear 1-quasi-perfect $q$-ary codes constructed using the proposed construction are calculated.
Библиографическая ссылка: Romanov A.M.
On the kernels of nonlinear quasi-perfect codes
В сборнике Международная конференция МАЛЬЦЕВСКИЕ ЧТЕНИЯ 10–14 ноября 2025 г. Тезисы докладов. 2025. – C.81.
Идентификаторы БД: Нет идентификаторов
Цитирование в БД: Пока нет цитирований